Сохранен 534
https://2ch.hk/pr/res/652472.html
Домен arhivach.hk временно не функционирует! Используйте адрес ARHIVACH.SITE.
24 декабря 2023 г. Архивач восстановлен после серьёзной аварии. К сожалению, значительная часть сохранённых изображений и видео была потеряна. Подробности случившегося. Мы призываем всех неравнодушных помочь нам с восстановлением утраченного контента!
Аноним OP 13/02/16 Суб 16:15:55 #1 №652472 
14553693557880.jpg
Недавно столкнулся с необходимостью систематизировать ресурсы так или иначе связанные с областью моей деятельности. Результатами решил поделится с вами; обоссыте, дополните или оставьте отзывы. Есть как баяны, так и не очень. Если взлетит, то буду оформлять перекаты. Короче, тред полезных ссылок и вопросов по канпутер саенс и машобу го.

Machine Learning 101
1. Introduction to Statistical Learning, Casella ( http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf )
Книга для нубов, очень хорошая. Все разжевано и положено в рот.
2. Pattern Recognition and Machine Learning, Bishop.
В начале пути пропустил эту книгу, так как Pattern Recognition мне казалось специализированной темой. Как выяснилось - зря, в книге также хорошо объяснены основы. Есть некоторые специальные темы (Sequential Data, Kernel Methods), объяснения которых мне показались лучшими среди когда-либо прочитанного.
3. Bayesian Methods for Hackers ( http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/ )
Охуительное введение в байесовские методы. Если теорема Байеса и вероятности вызывают у вас лишь тухлые ассоциации с лекциями начальных курсов вашего ВУЗа, то вы серьезно ошибаетесь - байесовский подход гибок и широко используется для прогнозирования и оценок.
4. http://neuralnetworksanddeeplearning.com
Введение в нейронные сеточки для самых маленьких, с виджетами на JS - можно регулировать ползунки и смотреть на результаты. Написано все простым английским.
5. https://vk.com/deeplearning
Чувак обозревает статьи с архива и других ресурсов, удобно.

Machine Learning Advanced
1. Elements of Statistical Learning (http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf )
Не рассчитывайте на легкую прогулку в пару недель. Чтение глав и выполнение заданий способно растянуться на год или больше. Оно стоит того. Уровень математической подготовки должен быть выше среднего.
2. Learning with kernels. Регуляризация и SVM, вот это все.
3. http://deeplearning.net/reading-list/
Собраны все нужные ресурсы по DL, от альфы до омеги.

Computer Science
1. Intoduction to Algorithms, Corman
2. The Art of Computer Programming, Knuth
Nuff said.
3. https://gcc.gnu.org/wiki/ListOfCompilerBooks
В ВУЗе проектирование компиляторов мне казалось каким-то космическим, далеким от меня занятием. А потом мне пришлось дописывать компилятор Python.
4. import ast
Опять про компиляторы. И я не шучу. Хотите начать в этом разбираться - зацените как устроен компилятор Python. AST - это абстрактные синтаксические деревья для разбора грамматик. В гугл, открываете доки и вперед!

Programming
1. Python Unlocked. Короткая книжка без соплей. В ней описаны метаклассы, дескрипторы, системы типов, шаблоны проектирования и TDD. Всего чуть больше 100 страниц концентрированной сути.
2. Code Complete (2nd), McConnel.
Неплохая книга. Не то чтобы обдрочиться, но в голове всякие фишки по структуризации кода и его проектированию остались.

Misc
1. Telegram: @techsparks
Подкаст про всякие гик-штуки.
2. Об интеллекте. http://archism.narod.ru/lib/bleiksli_sandra_ob_intellekte.pdf
Если устанете от математики, то почитайте про подход айтишника к изучению сознания. Книга хороша, особенно в середине, где рассказ про мозги начинается.
Аноним 13/02/16 Суб 16:24:33 #2 №652481 
Для начала вводную бы для простых смертных. Зачем оно нужно и какие задачи решает. Машинное обучение звучит круто, но неясно даже интересно оно мне или нет.
Аноним 13/02/16 Суб 16:48:22 #3 №652508 
>>652481
Мое личное определение такое: ML - это когда у тебя есть куча данных (тексты, картинки, таблицы) и тебе хочется ответить на какой-нибудь вопрос релевантный данным. Определять по картинкам кошка там или собака или по логам действий пользователя на сайте пытаться предсказать купит он что-нибудь или нет.
Аноним 13/02/16 Суб 18:22:39 #4 №652599 
А я курс по машинлернингу проходил на курсере. Английский у меня хуевый, поэтому смотрел с русскими сабами, которые кончились примерно на нейросетях. Похуй, стал смотреть с английскими сабами - в принципе тоже норм. Но потом, когда пошли алгоритмы классификации, пошел адовый рассинхрон сабов и звука. А еще дедлайны по домашкам. Забил хуй сразу. Но воспоминания теплые остались. Теперь можно хвастаться ерохинам, что можешь написать программу, которая сможет рулить машиной.
Аноним 13/02/16 Суб 18:32:34 #5 №652612 
>>652599
Эээ, не, разве что теоретической игрушечной машинкой. Пока ты на курсерных яве/питоне будешь анализировать что за хуита у тебя на дороге уже 5-х человек собьёшь, если раньше свопы не начнутся.
Аноним 13/02/16 Суб 18:37:45 #6 №652621 
Джва года ждал этот тред.
Аноним 13/02/16 Суб 18:41:30 #7 №652628 
>>652612
Ну я же не про гуглмобиль говорю.
А там они просто взяли изображение с камеры на крыше 20*20, чистую черную дорогу на фоне зеленых лужаек, прихуячили к рулю привод и покатались минут 10, обучая. Потом уже машина сама рулила нормально. Никакого управления скоростью/тормозом не было. Реализовано было через 400 входных нейронов (по пикселю на каждый), двумя хайденлейрами и n-му числу выходов, соответствующих углам поворота рулевого колеса.
Аноним 13/02/16 Суб 18:45:31 #8 №652635 
14553783319120.jpg
ЕНОТОВА-ТО УЖЕ НА KAGGLE ПЕРВЫЕ МЕСТА БЕРЕТ, СКОРО КАНДИДАТСКУЮ ПО ИЕРАРХИЧЕСКИМ МОДЕЛЯМ ЗАЩИТИТ, А ТЫ ВСЕ СИДИШЬ НА СОСАЧЕ КАК СИСАДМИН
Аноним 13/02/16 Суб 18:50:48 #9 №652641 
>>652628
А теперь приспустись-ка на землю с теоретических небес, и расскажи:
а) Какая там железка, с тамошними ограничениями в электричестве;
б) На чём это всё всё же реализовано (желательно с пруфами);

Судя по тому что я нашёл - там кроме камеры ещё 2 десятка датчиков со всех сторон и расчёт пути происходит на сервере, а физическое железо просто перестраховка от людей/машин/кошек, что какбе не очень подходит под описание "самоуправляющегося" автомобиля.
Аноним 13/02/16 Суб 18:51:39 #10 №652642 
14553786997010.png
14553786997111.jpg
14553786997172.jpg
>>652641
Пикчи из гугла отвалились.
Аноним 13/02/16 Суб 18:55:29 #11 №652646 
>>652641
Ты думаешь, что я перед тобой начну щас оправдываться, дабы не прослыть петухом от мира машинлернинга? Я же сказал, что дропнул эту хуиту на середине. А про руление машинкой я сказал, потому что примерно понимаю как это говно работает. Плюс ко всему можно выебываться перед ерохинами, круг интересов которых ограничивается машинами и их ремонтом.
Аноним 13/02/16 Суб 19:02:52 #12 №652656 
14553793722050.png
Оп, вижу ты в теме понимаешь, поясни одну вещь. Была такая тема, еще в совке - GMDH или МГУА - метод группового учета аргументов. Нечто вроде подхода к построению алгоритмов полиномиальной регрессии с постепенным усложнением и отбором лучшего варианта по критерию минимизации функции качества. Частный случай, н-р, полиномиальные нейросети. Годная же вроде тема, почему не взлетело?
Аноним OP 13/02/16 Суб 19:05:32 #13 №652660 
14553795323380.jpg
Вроде взлетело.

Вспомнил еще ШАДовские лекции: https://yandexdataschool.ru/edu-process/courses
Лекции Воронцова - вин. Правда без семинаров они не совсем полноценные, но теория изложена гладко и четкео.
Все лекции ШАДа охуенны, надеюсь они скоро выкатят в паблик больше курсов.
Аноним OP 13/02/16 Суб 19:22:39 #14 №652689 
>>652656
Впервые про такой метод услышал. Прочитал на вики и осталось странное ощущение, будто это просто иное название для комбинации basis set expansion и индуктивного алгоритма обучения. Мне кажется, оно не "не взлетело", а перекочевало в разные алгоритмы и сейчас просто имеет другие названия.
Аноним 13/02/16 Суб 19:33:15 #15 №652720 
>>652689
>Мне кажется, оно не "не взлетело", а перекочевало в разные алгоритмы и сейчас просто имеет другие названия.
Там довольно общая формулировка задачи, под которую подходит почти все что угодно вплоть до генетических алгоритмов. Но именно в изначальной форме оно по-моему, сейчас нигде не используется. Есть какая-то платная ебала с нереальными ценами https://www.gmdhshell.com/buy При том, что метод в свое время был достаточно разработан.
Аноним 13/02/16 Суб 19:37:20 #16 №652732 
Хороший тред, сам сейчас хочу написать курсач/диплом по распознаванию лиц. С каких статей можно про это начать копать?
Аноним 13/02/16 Суб 19:39:45 #17 №652738 
долбоёбы, хули тут ещё сказать. Систематизаторы, учёные блять доморощенные. Встретимся в макдональдсе за кассой
Аноним 13/02/16 Суб 19:40:45 #18 №652742 
>>652732
Пока понял что делать это нужно через применение
https://en.wikipedia.org/wiki/Principal_component_analysis
А потом уже с небольшим количеством параметров применять какой-нибудь диплернинг или интерполяцию, верно?
Аноним 13/02/16 Суб 19:41:22 #19 №652746 
>>652732

уже миллион таких дипломов, статей, книг. Всё всё что можно было изучено, этой теме уже 80 лет.

Нужны новые, прорывные вещи.
Аноним 13/02/16 Суб 19:49:05 #20 №652763 
>>652746
>>652738
Статистикой, вариационным исчислением, дифференциальными уравнениями, да даже натуральными числами занимались со времен царя гороха и до сих пор занимаются.
Покормил долбоеба.
Аноним 13/02/16 Суб 19:50:25 #21 №652767 
>>652720
Что там имеется ввиду под изначальной формой? Если я правильно понял, без эвристик в этом методе произойдет комбинаторный взрыв и жуткий оверфит уже на первых шагах. То есть per se его взять не получится. Ну а отсечение эвристиками приводит к уже известным под другими названиями методам. Тот же SVM RBF - это регрессия на полиномы бесконечной степени с регуляризацией, которая не дает произойти такому пиздецу как в чистом МГУА.
>https://www.gmdhshell.com/buy
Это что-то уровня C5.0/See5 - за гранью добра и зла.
>>652732
https://habrahabr.ru/company/synesis/blog/238129/
Аноним OP 13/02/16 Суб 19:51:21 #22 №652769 
>>652767
ОП
Аноним 13/02/16 Суб 19:59:00 #23 №652789 
14553827402510.png
>>652767
>Что там имеется ввиду под изначальной формой?
Полный степенной полином. Он разбивается на частные, комбинации которых оцениваются.
>без эвристик в этом методе произойдет комбинаторный взрыв и жуткий оверфит уже на первых шагах.
Там нечто типа функции приспособленности в генетических алгоритмах. Причем, они составные, не только среднеквадратичная ошибка, но и другие критерии.
Аноним OP 13/02/16 Суб 20:14:39 #24 №652833 
>>652789
Ага, упустил этот момент, картинка годная.
>комбинации которых оцениваются
Количество комбинаций будет неимоверно велико при количестве исходных переменных >~20.
>Там нечто типа функции приспособленности в генетических алгоритмах. Причем, они составные, не только среднеквадратичная ошибка, но и другие критерии.
Это плохо. Даже если чуть-чуть усложнить метрику ошибки и отойти от известных L1, L2, 0-1 или exp, то функция потерь перестает быть дифференцируемой и методы оптимизации перестают работать в принципе.
Аноним 13/02/16 Суб 20:29:54 #25 №652876 
14553845947020.png
>>652833
>Количество комбинаций будет неимоверно велико при количестве исходных переменных >~20.
Нет, оно даже при 100 переменных работало нормально, причем еще на тех совковых ЭВМ. Там не полный перебор всех вариантов, а комбинаторика по некоторой схеме. Я вот сейчас думаю как нечто подобное на R сделать с помощью генетических алгоритмов, чтобы полиномы генерировались в виде таблицы, которая бы подкладывалась генетическому алгоритму в виде пространства поиска (в варианте permutation, на перестановку элементов таблицы), а функцию приспособленности задать как какой-нибудь критерий, обычный для МГУА. В R есть некий пакет "GMDH" https://cran.r-project.org/web/packages/GMDH/index.html но там хуйня хуйней, нечто вроде полиномиальной нейросети, причем нельзя даже получить коэффициенты модели я у автора спрашивал.
Аноним OP 13/02/16 Суб 20:39:35 #26 №652920 
>>652876
Тащем-та мне нечего добавить к вышесказанному. Применение эвристик так или иначе приближает МГУА к уже существующим методам.
Попробуй, может выйдет что-нибудь годное. Вон китаец (https://github.com/dmlc/xgboost ) взял и написал пару лет назад градиентный бустинг на деревьях. Казалось бы - чему тут взлетать? В итоге это сейчас самая сильная библиотека с нелинейным методом для общих задач. Тоже всяких эвристик накрутил хоть жопой жуй - но работает же!
Аноним OP 13/02/16 Суб 20:41:03 #27 №652929 
>>652876
>Я вот сейчас думаю как нечто подобное на R сделать с помощью генетических алгоритмов, чтобы полиномы генерировались в виде таблицы
И да, посмотри вот это, может поможет чем-нибудь:
http://topepo.github.io/caret/GA.html
Аноним 13/02/16 Суб 20:47:44 #28 №652940 
>>652481
ML have no tasks.
USA university and researching groups use this shit (like they always do) and have some impressive results at recent years. All the geeks going crazy about that and start hyping: "It's a future technology, I'm going to be a new Bill Gates in ten years!!!". Coursera printed 100500 data science courses for making money on idiots. Thats all.

All the real market is 10 vacancies a year in all Russia. And 8 of it requires doctor degree in math and be here 10 years ago (called "analytics").

Sorry for English. I install Linux and now don't know how to change language. Shitty OS, I hope none of my brothers didn't die.
Аноним 13/02/16 Суб 20:51:03 #29 №652946 
>>652940
Вся суть /pr
Аноним 13/02/16 Суб 20:54:10 #30 №652949 
>>652946
Cheeseburger and big cola, please!
Аноним 13/02/16 Суб 20:54:28 #31 №652950 
>>652940
Да да, вместо того, чтобы зайти на транслит.ру ты решил выебнуться английским. Не удивительно, что у тебя работы нет.
Аноним 13/02/16 Суб 20:58:45 #32 №652957 
>>652950
I make 10 errors in every sentense, how it can be VIEBNUTSIA?
Аноним OP 13/02/16 Суб 21:00:08 #33 №652963 
>>652940
Как по мне, так ML вышел из застенок универов и является группой уже промышленных техник и технологий. Не совсем понятны слова про 10 вакансий в год. Если под вакансией в ML считать state-of-the-art в каких-нибудь нейронных сетях, то да, таких может быть десяток. Но обычно имеются ввиду навыки работы с данными и владения инструментами типа питонячих библиотек, Sparkов и прочих обвесов - таких вакансий валом.
Аноним 13/02/16 Суб 22:45:00 #34 №653055 
>>652660
Воронцов мудила, он студентов на ВМК гнобит.
sageАноним 14/02/16 Вск 00:40:24 #35 №653164 
оверхайпнутая параша
Аноним 14/02/16 Вск 01:08:43 #36 №653188 
>>652940
Твой английский это просто лолыч. Ты хоть документацию осиливаешь?
Аноним 14/02/16 Вск 01:42:53 #37 №653231 
>>652738
История из жизни: хотел я повесить недавно 100 табличек с номером телефона моего не айти бизнеса на столбах, спам такой что таджики срезают раз в сезон, быдлее быдлового, для речь не о том. Чуть голову не сломал гадая где их вешать что бы водители видели.
А сейчас я бы просто попарсил пару недель Яндекс пробки и в хуй не дул.
Аноним 14/02/16 Вск 07:32:52 #38 №653328 
>>653164
>статистика
>оверхайпнутая параша
найс история.
Аноним 14/02/16 Вск 09:46:05 #39 №653373 
>>653055
Это на ВМК студенты мудилы скорее.
Аноним 14/02/16 Вск 10:26:09 #40 №653380 
>>653188
Это два разных скилла. Я даже на слух английский понимаю относительно неплохо, а когда писать начинаю, получается чуть лучше, чем у него.
Аноним 14/02/16 Вск 10:48:53 #41 №653392 
>>653380
Такая же хуйня, не знаю как с этим бороться.
Аноним 14/02/16 Вск 11:11:33 #42 №653398 
>>653380
Двачую. Читаю и пишу хорошо, зато как рот открою, получается максимум: ГРЕЙТ БРИТАН ИС ЗЕ КЭПИТАЛ ОФ ЛАНДАН
Аноним 14/02/16 Вск 12:00:30 #43 №653430 
>>652472 (OP)
>Опять про компиляторы. И я не шучу. Хотите начать в этом разбираться - зацените как устроен компилятор Python. AST - это абстрактные синтаксические деревья для разбора грамматик. В гугл, открываете доки и вперед!
Книгу бы дракона добавил, это же буквально библия!
Аноним 14/02/16 Вск 12:56:51 #44 №653474 
>>652660
>yandexdataschool.ru
>504 Gateway Time-out
Постоянно какая-то ошибка на их сайте.
Аноним 14/02/16 Вск 13:55:57 #45 №653557 
>>653474
>yandexdataschool.ru
Хз, может ширина канала узкая? Там на все глагне видео грузится. Попробуй сразу на https://yandexdataschool.ru/edu-process/courses перейти
Аноним 14/02/16 Вск 13:57:38 #46 №653560 
14554474587110.png
>>653557
Главную грузит, а другие нет.
Аноним 14/02/16 Вск 14:36:49 #47 №653591 
>>653560
Репортнул админам, не знаю кто в воскресение будет шевелиться, больше ничем не могу помочь. У меня наоборот, курсы грузятся, а главная нет.
Аноним 14/02/16 Вск 15:35:39 #48 №653639 
14554533398730.png
>>652920
>Вон китаец (https://github.com/dmlc/xgboost ) взял и написал пару лет назад градиентный бустинг на деревьях. Казалось бы - чему тут взлетать? В итоге это сейчас самая сильная библиотека с нелинейным методом для общих задач.
А что это вообще, если в 3х словах? Пейперов уже накачал, обязательно почитаю, чувствую что какая-то годнота. Это случайно не типа МГУА?
Аноним 14/02/16 Вск 15:48:08 #49 №653649 
Есть что-нибудь по гугловскому TensorFlow? Кроме ссылок на туторы с оффсайта естественно.
Аноним 14/02/16 Вск 17:14:24 #50 №653716 
>>653649
курс udacity по deeplearning
Аноним 14/02/16 Вск 17:35:19 #51 №653741 
>>652660
Мне в свое время Воронцов (он моим научником был) советовал курс на курсере от High Economic School.
Курс оказался отвратительным :(
Аноним 14/02/16 Вск 17:39:02 #52 №653746 
>>653741
Этот?
https://www.coursera.org/learn/vvedenie-mashinnoe-obuchenie
Аноним 14/02/16 Вск 17:48:43 #53 №653756 
>>653746
Да, он самый
Аноним 14/02/16 Вск 17:55:32 #54 №653762 
>>653756
Да, мне тоже не понравился, хотя другие их курсы вполне себе ничего.
Аноним 14/02/16 Вск 18:11:26 #55 №653768 
В ML матешу нужно знать?
Аноним 14/02/16 Вск 18:18:49 #56 №653776 
14554631300230.jpg
>>653746
>>653756
Странно, что ты написал "в свое время", хотя курс двухнедельной давности. На курсере есть такая проблема: сложность курсов ограничена сверху, причем сильно ограничена. Поэтому на ней выложены какие-то говеные остатки нормального курса.
>>653639
Если коротко, то это градиентный бустинг, написанный на крестах. Быстрый, с кучей оптимизаций. Кое-как паралеллится - редкое свойство для нелинейных моделей.
Бустинг - это когда на шаге m мы имеем композицию из m-1 классификаторов, считаем ошибку этой композиции, строим m-ый классификатор на полученных ошибках и затем добавляем его в композицию классификаторов. Каждый следующий классификатор уменьшает ошибку всей композиции классификаторов. Слово градиентный в этом случае относится к способу построения композиции. Если не ссышься матана, то ступай в книгу EoSL, часть 10.2 (хотя имеет смысл всю главу прочитать). Ссылка на скачивание книжки в первом посте.
>>653649
Что-нибудь - это как-то жирно. Есть отдельные статьи по сверточным (всякие текстурные сети и прочее) и энкодерам-декодерам (word2vec). Сами мы как-то запускали все это говно на Кеплерах и даже получилось, правда на статью это не тянет. Но все вываливать я не готов, материала до пизды, спроси лучше конкретнее.
Аноним OP 14/02/16 Вск 18:19:25 #57 №653778 
>>653776
Метка отваливается постоянно, сука.
Аноним 14/02/16 Вск 18:34:48 #58 №653803 
>>653768
нее и так все чики-пуки)
Аноним 14/02/16 Вск 18:55:38 #59 №653822 
>>653776
>EoSL, часть 10.2 (хотя имеет смысл всю главу прочитать).
Спасибо, обязательно гляну.
Аноним 14/02/16 Вск 19:57:29 #60 №653952 
14554690496380.png
Тута tensorflow упомянули. Оно у вас вообще работает? Ставил по мануалу с сайта, запускаю пример оттуда же и пикрелейтед. Это можно считать нормальной работой? Всегда с подозрением относился к пистонопарашам, если честно.
sageАноним 14/02/16 Вск 20:06:43 #61 №653966 
14554696033340.jpg
>>652738
Двачую.

На программаче вообще странная субкультура сложилась. Реальных востребованных профессий (пхп, фронтенд, дотнет, 1С) все избегают и считают зашкваром. Вместо этого все отыгрывают гиков и ученых, учат датасаенс, функциональное программирование, С++, всякие новые никому не нужные языки.

Наверное это потому что тут большинство не хотят стать реальными специалистами в реальном мире и вообще из дома выходить не хотят. Вместо этого мечтают и занимаются эскапизмом. Своего рода ММОРПГ для тех кому за 18. Только вместо левелапов - новые никому не нужные технологии и языки.

Ну тащемта мне лучше. Меньше конкурентов - больше зарплата.

Изучайте дальше свои хаскели и нейросети и мечтайте, что когда-нибудь вы станете востребованными специалистами. И смейтесь над пхп-шниками и 1С-никами, которых берут на работу уже после пары месяцев обучения. Они ведь - неудачники, а вы - элита, правильно?
Аноним OP 14/02/16 Вск 20:36:51 #62 №654023 
>>653952
ЯННП.
>Оно у вас вообще работает?
Да.
>Это можно считать нормальной работой?
Да. Что тебе не нравится?
>Всегда с подозрением относился к пистонопарашам, если честно.
Ну причем тут пистонопараша? Весь tf написан на крестах, а на питоне только удобная обвязка.
>>653966
Кесарю кесарево. В остальных тредах (пхп, фронтенд, дотнет, 1С) сидит куда больше народу, чем здесь. Субкультура какая-то, большинство - это о чем вообще. Мы пытаемся тут сабж обсуждать, вроде даже получается; какие проблемы, офицер?
>Вместо этого все отыгрывают гиков и ученых, учат датасаенс, функциональное программирование, С++, всякие новые никому не нужные языки.
Намешал в одну кучу и людей и коней.
>реальными специалистами в реальном мире
Ловко ты тут всех задетектировал. Расходимся, хиккари.

Аноним 14/02/16 Вск 21:16:48 #63 №654072 
>>653966
Подрастешь еще чуть-чуть, и перестанешь противопоставлять Спп с ФоПэ и фронтенды с вебыми, я гарантирую это.
Аноним 14/02/16 Вск 21:25:09 #64 №654087 
>>653966
>Ну тащемта мне лучше. Меньше конкурентов - больше зарплата.
>Весь пост пытается обосрать ML.
Манек, ты на ноль делишь. Тебе не лучше. У тебя пердак на ровном месте подгорел, среди всех нас тебе хуже всех сейчас. Очередные вопли маньки-неосилятора.
Аноним 14/02/16 Вск 21:38:02 #65 №654109 
>>654087
Это у него так сознание пытается защитить себя от батхерта, что выливается в маня-мирок. Лучше бы он голову в унитаз прятал.
Аноним 14/02/16 Вск 21:43:57 #66 №654120 
14554754380000.jpg
14554754380031.jpg
14554754380072.jpg
>>653966
Чумазый пиздёныш с громкой отрыжкой и отчаянным воплём ввалился в комнату, где господа почивали после сытного завтрака. Битордик ошарашенно вылупился на удивлённых сэров, за пазухой у него явно было что-то запрятано. Ну, что у тебя там, зассыха? - снисходительно промолвил самый молодой из господ. А-а-фоть - заикаясь промямлила замарашка и трясущейся рукой вывалила на дорогой персидский ковёр кучу смрадного свежего говна. Лица элитариев побагровели от такого неслыханного безобразия. Камёрдинера сюда, живо! - воскликнул опять же самый молодой и самый вспыльчивый из них. Оказия сия окончилась, как можно безошибочно предугадать который раз не в пользу плебса, оно и к лучшему, не место черни среди высшего общества.
Аноним 14/02/16 Вск 21:45:12 #67 №654122 
>>654120
Схоронил.
Аноним 14/02/16 Вск 21:55:45 #68 №654132 
На мой взгляд, анализ данных это все-таки пока что чрезмерно популярная и распиаренная, а потому дурнопахнущая область знаний. Деньги там крутятся бешеные, вместо придумывания качественно новых методов обычно выгоднее привычным движением нахуярить random forest и дрочить коэффициенты до прихода к успеху. Из-за этого теоретическое развитие ее уныло и медленно, а большая часть научных работ отдает бревнологией. Пока это всех устраивает, такое положение вещей сохранится, и вкатываться в это дерьмо - не самая лучшая идея. Тем не менее, разумеется, это в любом случае гораздо лучше крудошлепства, а бугурт отметившегося выше холопа-1Сника - подтверждение тому.
Аноним 14/02/16 Вск 22:10:52 #69 №654141 
Стоит ли начать обмазывание ML? Можно найти работу в этой области где-то кроме яндекса?
Аноним 14/02/16 Вск 22:34:46 #70 №654153 
14554784863860.jpg
>>654132
Частично не соглашусь. Да, есть хайп вокруг этой области. Но по мне, здесь уместно сравнение с вебом. Веб в нулевые переживал хайп, называемый сейчас бумом доткомов. Однако сама по себе технология была охуительна вне зависимости от хайпа, а после сдутия пузыря веб вошел во время сбора плодов - ровное, продуктивное развитие, давшее нам гуглы, фейсбуки и прочие амазоны.
ML тоже уже готов дать в ближайшие годы решения для автопилотов, дизайна лекарств, вопросно-ответных систем, систематизации знаний. Поэтому вкатываться в это дерьмо стоит при условии серьезности подхода. Не стоит расчитывать прочитать одну книжку и сразу вкатиться. Идеально, если вы угораете по ИИ и мозгам, а также по статистике и программированию, тогда не стыдно и жизнь с этим связать.
>а большая часть научных работ отдает бревнологией
Зависит от того, откуда ты берешь эту большую часть. Я периодически просматриваю arxiv и как раз таки работы по ML обычно отличаются неординарностью. Конечно, это не гравитационные волны, но новизна в них точно есть.
>>654141
В ДС можно найти. Яндекс, мейлру, касперский, несколько биоинформатических компаний (iBinom, можно еще blastim.ru поскролить на тему работы), билайн (они с НГ целое подразделение открыли под ML и биг дату), связной. Ну и западные аутсорсы, если готов рачить за валюту.
А вот стоит ли начинать обмазывание себя лучше спроси. Порешай тестовые контесты с кегла, чтобы понять нравятся ли тебе прикладные задачи или нет.
Аноним OP 14/02/16 Вск 22:35:15 #71 №654155 
>>654153
Освятил.
sageАноним 14/02/16 Вск 22:41:22 #72 №654157 
>>653328
две формы лжи, братишка
Аноним 14/02/16 Вск 22:43:31 #73 №654162 
>>654157
Две формы лжи в глазах смотрящих. Сама по себе статистика беспристрастна.
sageАноним 14/02/16 Вск 22:43:42 #74 №654163 
>>654157
>три
quckfix
Аноним 14/02/16 Вск 22:48:31 #75 №654176 
>>653966
маня, 99% работы в твоих "востребованных профессиях" это заунылейший однотипный дроч с пониженной интеллектуальной составляющей, сродни перекладывания бумажек в офисе
да, ты не ослышался, пхпист, 1Сник, яваиндус, дуднечик = офисный клерк

самое комичное ещё и то, что подобные языки максимум простые и тупые, оттого и средства программирования предоставляемые ими чрезвычайно убогие и говёные, не позволяющие прозрачно выражать свои мысли и нормально решать задачи

то есть какой нибудь пхпист - не просто клерк, он ещё и клерк в конторе с отсутствующей современной оргтехникой, средствами автоматизации и т.д, ну типа 45летней бухгалтерши тёти Груни из рашкинской мелкой госконторы с тысячами бумажек, папочек и т.д.
Аноним 14/02/16 Вск 22:59:01 #76 №654192 
>>654153
Походу какая-то рутина. А можно ли где-то связать жизнь с криптографией и алгебраической/алгеброгеометрической теорией кодирования?
Аноним 14/02/16 Вск 23:00:27 #77 №654196 
>>654192
Даже не столько рутина, сколько неинтересно мне. Не люблю я эту статистику и мозги. Мне нравится алгебра, криптография, ассемблер и эксплоиты.
Аноним 14/02/16 Вск 23:16:04 #78 №654217 
>>653966
нононо, я пхпшник меня даже после пары лет обучения не берут, так что завали варежку - лучше мачин лернинг буду изучать и работать продаваном, как все.
Аноним 14/02/16 Вск 23:18:29 #79 №654218 
Оп, кидай сразу ссылки на бесплатные эти книги в сети.
Аноним 14/02/16 Вск 23:34:58 #80 №654239 
>>654153
Ты умничка
Нет, правда
Аноним 15/02/16 Пнд 00:17:15 #81 №654306 
Кто нибудь читал? Есть отзывы?
http://www.spbdk.ru/catalog/1058135.html
Аноним 15/02/16 Пнд 00:42:49 #82 №654357 
>>653966
>востребованными специалистами
Самое забавное что корреляция между востребованностью и сложностью - вещь мифическая. Хуй угадаешь короче кому ты и чем можешь платно услужить, и если сегодня у тебя всё хорошо, то что будет завтра. Полагаю многие здесь целятся в гугл или хотя бы яндекс чтобы дяди дали нескончаемый поток задач приближенных к науке.
Аноним 15/02/16 Пнд 00:47:02 #83 №654365 
>>652646
> Плюс ко всему можно выебываться перед ерохинами
На этом месте перестал читать дауна
Аноним 15/02/16 Пнд 02:18:28 #84 №654497 
А вообще насколько полезно читать все эти книги? Вот я бишопа открыл, полез какой-то матан. Я к тому, что вот читаешь сидишь эти буковки, не продуктивнее ли тупо скачать какую-нибудь библиоетку под нейросети и сидеть ее ковыря? Т.е. то же время ты мог потратить на кодинг вместо разжевывания букв. Ну наверное их стоит читать только тем, кто уже итак кодит на коммерческой основе для разминки мозгов?
Аноним 15/02/16 Пнд 02:23:35 #85 №654505 
>>654153
>Зависит от того, откуда ты берешь эту большую часть
Разумеется, светлые головы есть всегда, я же не отрицаю. Но периодически листаю machinelearning.ru, слушаю посонов с ММП-кафедры и из вышки, ну ты понял. И складывается впечатление, что если в матлогику или, скажем, в какую-нибудь теоретическую физику идут люди действительно увлеченные, с горящими глазами, то тут положение прискорбное. Все валом валят в БИГДАТА, потому что модно, и вообще Ерохин уже на конференции ездит. Олдфаги нагружают молодняк неинтересными задачами, а те и не против, чувствуют себя приобщенными зато. И все это приправлено фантазиями об успешных стартапах, пиаром от Бобука, рекламой ШАДа на каждом заборе и толпой PhD с предсказанием цвета медвежьего кала по годам и географическим широтам в диссертации.
Аноним 15/02/16 Пнд 02:37:55 #86 №654540 
>>654153
>ML тоже уже готов дать в ближайшие годы решения для автопилотов, дизайна лекарств, вопросно-ответных систем
Я скептически смотрю на такие утверждения. На мой взгляд, сам подход, лежащий в основе ML, порочен. От детальной декомпозиции предметной области, понимания и воспроизведения всех деталей в модели, люди переходят к упрощенным моделям-черным ящикам.

>Хайра рассказывал долго и сбивчиво. Саул подгонял и подправлял его. Дело, по-видимому, сводилось к тому, что местные власти пытались овладеть способом управления машинами. Методы при этом использовались чисто варварские. Преступников заставляли тыкать пальцами в отверстия, кнопки, клавиши, запускать руки в двигатели, и смотрели, что при этом происходит. Чаще всего не происходило ничего. Часто машины взрывались. Реже они начинали двигаться, давя и калеча всё вокруг. И совсем редко удавалось заставить машины двигаться упорядоченно. В процессе работы стражники садились подальше от испытываемой машины, а преступники бегали от них к машине и обратно, сообщая, в какую дыру или в какую кнопку будет сунут палец. Всё это тщательно заносилось на чертежи.

Да, так легче, дешевле, во многих случаях продуктивнее. Но ты заметил, насколько чаще стали происходить подобные диалоги: "Ух ты, точность 97%, как ты это сделал?" - "А хуй его знает, коэффициенты удачно подобрал". Какой толк от создания искусственного интеллекта, если мы не будем понимать, как он работает?
Аноним 15/02/16 Пнд 02:41:51 #87 №654545 
>>654497
Обычно чтобы мозг у ученика не взорвался, талантливый преподаватель придумывает плавную подачу материала. В итоге ученик осваивает предмет быстро, эффективно, без каши в голове и фрустрации. Быть сам себе преподавателем непросто, но этому тоже можно научиться.
Аноним 15/02/16 Пнд 05:34:45 #88 №654728 
>>654153
Не прошел собеседование в Билайн как раз перед новым годом, спрашивайте ответы.
Аноним 15/02/16 Пнд 05:45:12 #89 №654729 
>>654728
Может в формате кулстори расскажешь?
Аноним 15/02/16 Пнд 06:40:28 #90 №654749 
>>654729
Каглохолоп-самоучка, в недавнем типа-кагл соревновании от билайна (проходило на хабре, если кто не в курсе) занял BRETTY GOOD :DDD место.


Соответственно, связались, запросили код из соревнования, потом было кратенькое собеседование, где вскрылось, что у меня нет коммерческого опыта работы вообще. В связи с этим, дали еще одно маленькое задание, сделал, отправил только питоновский скрипт. Через почти три недели молчания сам с ними связался - оказалось, что еще нужно дослать что-то типа отчета с описанием основных шагов (с комментарием, мол, "xgboost мы и здесь запускать умеем", будто я не на джуна апплаился). К тому времени нашел работу в своем мухосранске (не связанную с датасаенс вообще никак), и забил. О чем теперь очень жалею.

Надо сказать, что вообще весь процесс общения был очень затянут. Видимо, сказались запуск нового отдела (про который анон написал выше) и их школой.
Аноним 15/02/16 Пнд 08:41:24 #91 №654774 
14555148844740.png
>>654192
>>654196
Тут я не в теме, бро. Из коммерческого что-то похожее есть у вирологов в Касперском - ассемблер и эксплоиты плюс немного криптографии. Но туда отбор как в космонавты. Остальные места - это, скорее всего, лаборатории соответствующих кафедр. Я даже не знаю куда сегодня податься криптоаналитику в коммерции. Коммерсам, если надо, проще увеличить разрядность ключа в два раза, чем какие-то теоретические изыски проводить.
>>654218
Секрет Полишинеля: http://libgen.io
>>654239
Спасибо
>>654497
Здесь все так же как и в остальных областях. Хочешь программировать - программируй, а если хочешь писать языки программирования, то волей-неволей прийдется теорию подтягивать. Хочешь просто освоить полезные тулзы и уметь сваять какую-нибудь регрессию, чтобы все охуели как ты можешь - качай либы и тренируйся на https://www.kaggle.com/c/titanic
А если ты угораешь по вещам, находящимися под капотом, то прийдется овладевать матаном.
>>654505
> Все валом валят в БИГДАТА, потому что модно, и вообще Ерохин уже на конференции ездит.
Что-то такое есть. Но это не должно застилать глаза. ML не о кегле и толпах бигдатеров. КМК, ML - это про движение к слиянию человеческого и машинного.
>>654540
>От детальной декомпозиции предметной области, понимания и воспроизведения всех деталей в модели, люди переходят к упрощенным моделям-черным ящикам.
Модель всегда является упрощением реальности и черным ящиком до некоторой степени. И не всегда детальная декомпозиция - это хорошо. Если попытаться детально декомпозировать задачи машинного зрения, то ты утонешь в деталях; в то время как сверточные сети и их обучение на задачах зрения делает декомпозицию такого уровня, которую мы еще можем понять своим мозгом. Другой пример - научные статьи. Каждая статья - попытка людей детально в чем-то разобраться. Способен ли один человек в мире или хотя бы группа людей разобраться во всех статьях, выходящих в печать сегодня? Думаю, нет. А способен ли систематизировать эти знания ИИ в скором времени? Думаю, да. Человек уже не может охватить всего и, так или иначе, нам прийдется полагаться на черные ящики.
>Какой толк от создания искусственного интеллекта, если мы не будем понимать, как он работает?
Люди не понимают как работает большинство из того, чем они успешно пользуются. А во-вторых - имхо, проще понять как работает существующий ИИ, чем интеллект человека.
>>654728
>>654749
Тоже участвовал, лол. Хотя участием это тяжело назвать, в начале соревнования посмотрел на гистограмы, покрутил ручки у xgboost пару часов и забил, потому что не люблю это дело. Занял место в топ-10, потом звонили - не пошел, потому что работа есть уже.
Можешь просто так подать им заявление, если жалеешь. Это нормально.
P.S. Если дотянем до бамплимита и будет перекат, то поправлю шапку - добавлю инфу про кегл для тех, у кого руки чешутся, и про книгу дракона.
Аноним OP 15/02/16 Пнд 08:41:44 #92 №654775 
>>654774
Традиционно освятил.
Аноним 15/02/16 Пнд 11:50:52 #93 №654847 
>>654087>>654109>>654132>>654120
>Пытаешься помочь безработным эскапистам, ведущимся на хайп, принять правильное решение в выборе направления профессионального развития
>Говорят, что тебе припекло
Okay

>>654176
> работы в твоих "востребованных профессиях" это заунылейший однотипный дроч с пониженной интеллектуальной составляющей, сродни перекладывания бумажек в офисе
> пхпист, 1Сник, яваиндус, дуднечик = офисный клерк
>подобные языки максимум простые и тупые, оттого и средства программирования предоставляемые ими чрезвычайно убогие и говёные
Вот об этом я и говорил. Типичный представитель /pr . ЧСВ до облаков, всех реальных специалистов считает говном. Себя считает намного умнее и талантливее всех этих людей, поэтому из принципа не хочет заниматься тем, чем занимаются они.
При этом игнорирует тот факт, что он живет на мамины деньги и его самого никто не возьмет на вакансию пхп-джуна (потому что он не осилил херову тучу веб-технологий и фреймворков).

Эскапизм сферический в вакууме.


>>654357
>Самое забавное что корреляция между востребованностью и сложностью - вещь мифическая.
Корреляция скорее обратная. Чем выше коэффициент эффективность/сложность, тем активнее область/технология развивается, вытесняя все конкурирующие области. Потенциально мощные, но неоправданно сложные технологии никогда не приживаются, ими занимаются единицы энтузиастов в качестве хобби, либо (если им очень сильно повезло) за деньги в топовых университетах и организациях уровня Гугла. И какой процент таких счастливчиков? Это то же самое, что сказать: "Шварценеггер накачался и стал успешным, значит мне тоже нужно качаться". При этом тот факт, что 99.9% накачавшихся никак свою жизнь не изменили и впустую потратили время - упрямо игнорируется.
Аноним 15/02/16 Пнд 12:13:04 #94 №654853 
>>653741
Курс и правда плохой, интересно, много ли бросило
Аноним 15/02/16 Пнд 14:12:27 #95 №654928 
>>654774
>Тоже участвовал, лол. Хотя участием это тяжело назвать, в начале соревнования посмотрел на гистограмы, покрутил ручки у xgboost пару часов и забил, потому что не люблю это дело. Занял место в топ-10, потом звонили - не пошел, потому что работа есть уже.

Значит нас уже двое тут из топ-10, сидящих на зекаче. Какова вероятность?

Если не секрет, что за работа? Пили стори. На кегле тоже не участвуешь? Не ради чесания рук, так ради денег Как я понял, с опытом проблем нет у тебя.
Аноним 15/02/16 Пнд 15:45:31 #96 №654997 
>>654023
>Да. Что тебе не нравится?
"Killed" в конце не понравилось. Но вроде и правда работает, пример с cifar10 пока не вывалмлся с ошибкой. А вот тут http://datareview.info/article/tensorflow-razocharovyivaet-glubokomu-obucheniyu-ot-google-ne-hvataet-glubinyi/ говорят, что свободная версия не поддерживает масштабируемости:
>Кроме того, есть вопросы по поводу масштабируемости (а точнее, ее отсутствия). Название официальной публикации, посвященной TensorFlow, звучит следующим образом: «TensorFlow. Крупномасштабное машинное обучение в гетерогенных распределенных системах» (TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems). Однако версия с открытым исходным кодом выполняется только на одном узле.
Аноним 15/02/16 Пнд 19:48:05 #97 №655289 
недавно купил книжку бишопа, сижу по вечерам читаю
до этого читал "First Course in Machine Learning" и "Learning from Data" (половину где то, не особо понравилось)
Аноним 16/02/16 Втр 15:14:10 #98 №655991 
>>653649
>Есть что-нибудь по гугловскому TensorFlow? Кроме ссылок на туторы с оффсайта естественно.
В марте обещают книжку http://www.tensorflowbook.org/ надеюсь бесплатно, а то когда еще на либгене будет
Аноним OP 16/02/16 Втр 23:05:31 #99 №656916 
14556531319710.jpg
>>654853
Интересно почему так. В ШАДе курс доставлял. То ли Воронцов скатился, то ли курсера упростила программу.
>>654928

>Если не секрет, что за работа? Пили стори.
Не секрет, Я. Какие стори пилить не знаю. Да и нельзя особо растекаться.

На кегле участвую только в чем-нибудь новом для меня, да и лишь когда время есть. Раньше чаще зависал. Руку набить помогает, но в десятый раз сидеть и перебирать параметры по сеточке уже надоедает, а некоторые контесты только так и решаются.
>К тому времени нашел работу в своем мухосранске (не связанную с датасаенс вообще никак), и забил. О чем теперь очень жалею.
Ну так и продолжи собеседоваться нахуй. Дошли что просили, сопроводи письмом. Они вроде до сих пор народ набирают.
>>654997
Killed пушто там демон поднимается под капотом, его SIGKILLом и вырубают после завершения действий.
>свободная версия не поддерживает масштабируемости
И да, и нет. У гугла есть сетевая версия, она действительно не в паблике. С другой стороны, масштабирование на GPU и на несколько процессоров запилено и работает.
>>655991
Охуенно же, правда никакой инфы в сети я не нашел. С другой стороны, у автора почти все принты в pdf выложены на личной странице. Хочется верить, что эта книга не будет исключением.
Аноним 17/02/16 Срд 02:22:16 #100 №657209 
самый нормальнхый тред
Аноним 17/02/16 Срд 06:57:33 #101 №657248 
>>652472 (OP)
>компилятор Python
>компилятор
>Python
(^:
Аноним 17/02/16 Срд 07:15:20 #102 №657254 
>>657248
А я-то думал, что тайной компиляции в x86 бинарник, помимо пропрьетарных жидокощеев, обладает только дедушка Столмэн и его верные адепты.
Аноним 17/02/16 Срд 07:29:37 #103 №657257 
>>657248
>компилятор Python
Исходник компилируется в байткод, что тебя так удивляет?
Аноним OP 17/02/16 Срд 09:32:37 #104 №657308 
>>657254
>>657257
>>657248
Да, то был llvm-фронтенд для Python с кусками из PyPy для оптимизаций.
Это все было благой идеей, которая в дальнейшем столкнулась с реальностью в виде плохо переносимых numpy, scipy и всего того, за что мы любим Python.
Аноним 17/02/16 Срд 14:20:44 #105 №657496 
14557080448920.png
>>656916
>У гугла есть сетевая версия, она действительно не в паблике. С другой стороны, масштабирование на GPU и на несколько процессоров запилено и работает.
То, что на нескольких процессорах локально работает, это понятно. Вот в этой http://download.tensorflow.org/paper/whitepaper2015.pdf статье пишут, что общий граф можно разбить на субграфы, которые могут выполняться на физически разных девайсах, и их взаимодействие реализовано через receive и send узлы, поддерживающие разные протоколы, в т.ч. ТСР. Так вот, эти узлы присутствуют в свободной версии?
Аноним 17/02/16 Срд 14:26:02 #106 №657506 
>Programming
>1. Python Unlocked.
ОП, тебе правда нужна книга, чтобы кодить на питоне?

Обсуждать сферический МЛ в вакууме скучно. Всю необходимую информацию можно найти за минуту в гугле. Новости все можно узнать из реддита. Лучше бы рассказал, что ты делаешь, или что тебе конкретно интересно.
Аноним 17/02/16 Срд 20:09:24 #107 №657826 
>>657257
То, что путон интерпретируемый язык, а не компилируемый?
Аноним OP 17/02/16 Срд 23:13:12 #108 №658009 
14557399926800.jpg
>>657826
Интерпретируемость - это как та или иная программа (компилятор или интерпретатор) работает с листингом кода, а не неотъемлемое свойство языка. Для того же C++ есть отличный интерпретатор Cint.
>>657506
>ОП, тебе правда нужна книга, чтобы кодить на питоне?
Да, мне правда нужна книга, чтобы осознать некоторое мясо в питоне. Надеюсь понятно, что Python Unlocked не об основах языка. Например, в интернете на тот момент я не нашел ни одного внятного описания дескриптора и того, как это влияет на порядок обхода для извлечения атрибутов. Согласен, что в большинстве случаев нужно сесть и начать кодить, но в определенный момент времени есть риск выучить неэффективный подход и пропустить мимо эффективный. Либо ты можешь столкнуться с кодом, который невозможно понять без этих знаний.
>Обсуждать сферический МЛ в вакууме скучно. Всю необходимую информацию можно найти за минуту в гугле.
Так можно сказать про большинство тредов двача.
>Лучше бы рассказал, что ты делаешь, или что тебе конкретно интересно.
Так задавай вопросы мне и остальным, я с удовольствием расскажу что знаю.
У меня большую часть времени занимает работа, про которую много и не могу говорить. Без конкретики - я защищаю сервисы Я и их пользователей от ботов. Кроме того, в свободное время пилю несколько побочных проектов разной степени тухлости и занимаюсь нейронными сетями для зрения. Один из проектов про автоматическое извлечение онтологий из текстовых данных: нужна универсальная тулза а-ля xgboost или vowpal на такой сорт задач. Второй - про сети добровольных вычислений, когда каждый участник сети все свободное процессорное время отдает в сеть, а взамен в любой момент времени может от сети потребовать большое количество процессорного времени на свои задачи. Иными словами, это про взятие вычислительных квантов в долг.
>>657496
Я еще раз проверил - в коде стоят заглушки на распаралеливание по физически разным девайсам.
Выглядеть будет как with tf.device('/job:worker/...')
Но кода еще нет, обещают выкатить, когда - неизвестно. Сегодня выкатили gRPC фронт для предсказаний под названием TensorFlow Serving. Тренировать пока все равно нельзя.
Детали здесь: https://github.com/tensorflow/tensorflow/issues/23
Аноним 18/02/16 Чтв 02:04:58 #109 №658183 
>>658009
>язык с неразрешимой грамматикой
>отличный интерпретатор
Аноним 18/02/16 Чтв 11:19:43 #110 №658225 
>>658183
>неразрешимая грамматика
>Гугл 0 результатов, редирект на неоднозначную грамматику
>пытается выебнуться, даже не понимая терминов
>связывает качество интерпретатора с грамматикой
Найс даун выполз.
Аноним 18/02/16 Чтв 11:21:25 #111 №658226 
>>657826
>>658183
Съеби уже, хуесос. Ты в каждом посте обсираешься.
Аноним 18/02/16 Чтв 14:35:04 #112 №658408 
14557953047120.jpg
14557953047131.jpg
14557953047132.jpg
14557953047133.jpg
> Нет, ML не оверхайпнутая параша
мне припекло от этих молодых и смешливых
Аноним 18/02/16 Чтв 14:53:31 #113 №658447 
>>658408
А почему это оверхайпнутая параша? Потому что так сказал какой-то онанимный долбоеб с подтирача?
Аноним 18/02/16 Чтв 15:06:47 #114 №658471 
>>658408
шлюха с ласт пика руководитель отдела между прочим
Аноним 18/02/16 Чтв 15:45:39 #115 №658531 
>>658471
НАСОСАЛА
Аноним 18/02/16 Чтв 16:20:52 #116 №658598 
>>658471
Ты так удивлён, словно шлюха-руководитель отдела это пиздец какая редкость а не норма
Аноним 18/02/16 Чтв 17:43:23 #117 №658710 
14558066037990.png
Оп, а вот про это https://hama.apache.org/ что-нибудь знаешь? Вроде бы может в распределенную работу.
Аноним 18/02/16 Чтв 17:57:58 #118 №658733 
>>658009
Ну вот про зрение расскажи, там же современные технологии используются. В чем суть, какие успехи. На гитхаб выкладываешь поделия?
Использует ли яндекс глубокие НС в продакшене? Собирается ли? Если да, в каких системах?
Аноним 18/02/16 Чтв 21:44:33 #119 №659024 
>>658710
дали блять спарк, нет будет дрочить хаму
Аноним 19/02/16 Птн 03:56:47 #120 №659236 
Где по спарку можно почитать? Прям для дебилов от и до.
Аноним 19/02/16 Птн 13:11:34 #121 №659378 
>>658408
О, хуесос-Кантор уже тут. Уже заплатили 400 евро чтобы за 3 месяца стать СУПЕР ВАСТРЕБАВАННЫМ СПЕЦИАЛИЗЛОМ ДАТА СУЕНС ПРЕДСКАЗАТЕЛЕМ СТЕПЕНИ ТВЕРДОСТИ КАЛА ПО ОБУЧАЮЩЕЙ ВЫБОРКЕ РУЧНЫХ КУНИЦ???
Аноним 19/02/16 Птн 13:26:54 #122 №659380 
>>654365
Но ты почти дочитал.
Аноним 19/02/16 Птн 15:09:18 #123 №659463 
>>659024
>спарк,
Хмм, не слышал про такое. Но там же нет deeplearning'a, только через сторонние библиотеки типа http://deepdist.com/ ?
>>659236
>Где по спарку можно почитать?
Как-то так, наверное http://gen.lib.rus.ec/book/index.php?md5=7d95152846161d75c6937e058717ab83
Аноним 19/02/16 Птн 19:35:23 #124 №659790 
14558997236640.png
А тем временем еще позавчера новый TensorFlow (0.7) зарелизили. Старые глюки исправили, добавили новые :3 Алсо, возможность распределенного выполнения пока жмутся вылаживать.
https://github.com/tensorflow/tensorflow/releases
Allow using any installed Cuda >= 7.0 and cuDNN >= R2, and add support for cuDNN R4
Added a contrib/ directory for unsupported or experimental features, including higher level layers module
Added an easy way to add and dynamically load user-defined ops
Built out a good suite of tests, things should break less!
Added MetaGraphDef which makes it easier to save graphs with metadata
Added assignments for "Deep Learning with TensorFlow" udacity course
Кстати, под какой пистон его лучше ставить, под 2 или 3ий?
Аноним 20/02/16 Суб 16:38:09 #125 №661052 
14559754897640.png
Есть еще такая тема - MXnet от того китайца, создателя xgboost. https://github.com/dmlc/mxnet Говорит, что круче TensorFlow и даже поддерживает мобильники, к тому же распределенная работа есть уже сейчас, а не потом когда Сирожа разрешит:
>Comparing to other open-source ML systems, MXNet provides a superset programming interface to Torch7 [3], Theano [1], Chainer [5] and Caffe [7], and supports more systems such as GPU clusters. MXNet is close to TensorFlow [11] but can additionally embed imperative tensor operations. MXNet is lightweight, e.g. the prediction codes fit into a single 50K lines C++ source file with no other dependency, and has more languages supports. More detailed comparisons are shown in Table 2.
Аноним 20/02/16 Суб 18:12:26 #126 №661127 
>>658009
Ну так расскажи подробнее, какие прорывы?
Вот на даггый момент я знаю, что буквы определять можно, причем разной степени сложности. Какое окружение используете, какие разработки?

Просто все твое описание сейчас выглядит так:
Я делаю нейросеть для определения текста - звучит скучновато, потому что это одна из непосредственных задач нейросетей.

Ну и классика: хожишь на мит апы в М@ил.сру каждый год? Если да, то удалось подцепить оттуда что-нибудь годное: знания, связи?
Аноним 20/02/16 Суб 22:00:11 #127 №661336 
14559948111470.jpg
>>658710
Слышал, но не использовал. Судя по тому, что за 4 года они не зарелизили версию 1.0, развивается проект тухло. Spark доставляет гораздо больше, хотя меня до определенной версии очень заебывали постоянные эксепшены в лямбдах (Scala мы не юзали). Сейчас вроде все ок.
>>659236
https://www.youtube.com/watch?v=7k4yDKBYOcw
https://www.youtube.com/watch?v=VWeWViFCzzg
А вот про почитать не знаю.
>>659463
>Но там же нет deeplearning'a, только через сторонние библиотеки типа
Глубокое обучение суть перемножение тензоров. Такое могут делать даже самые куцые системы. Другое дело в удобстве. И да, на Spark можно учить сетки, в mllib вроде собирались добавить такую возможность.
>>659790
И так и не влили коммит, врубающий GPU на маках. Аж трисет, уже два месяца как PR болтается с фиксами.
>Алсо, возможность распределенного выполнения пока жмутся вылаживать
Есть мнение, что они причесывают код и вычищают его от коммерческой тайны, это дело небыстрое.
>Кстати, под какой пистон его лучше ставить, под 2 или 3ий?
Ставь под третий, если не отягощен легаси.
>>661127
Буквы же были самой первой задачей, которую решили на сетях.
>Ну и классика: хожишь на мит апы в М@ил.сру каждый год? Если да, то удалось подцепить оттуда что-нибудь годное: знания, связи?
Нет, не хожу, мне внутрияшных событий хватает с головой. Связи как-то сами обретаются в процессе разработки, а с мейлом, ко всему прочему, есть отдельные контакты по линии противостояния ботнетам.

И да, хорошо, я попробую рассказать про зрение в посте завтра или послезавтра. На это нужно время. На вопросы про работу не могу ответить. Могу разве уточнить что использовать глубокие нейронные сети в продакшене, если это не задачи зрения - оверкилл. Несложные куски типа натренированных энкодеров вероятно могут использоваться.
Аноним OP 20/02/16 Суб 22:00:33 #128 №661337 
>>661336
Освятил
sageАноним 21/02/16 Вск 09:39:10 #129 №661615 
>>661337
Обоссал машинных гадателей.
Аноним 21/02/16 Вск 12:14:13 #130 №661678 
>>661615
Бампнул машинных богов
Аноним 21/02/16 Вск 14:07:55 #131 №661747 
>>661336
>Есть мнение, что они причесывают код и вычищают его от коммерческой тайны, это дело небыстрое.
А что может быть коммерчески тайного в распределенном перемножении тензоров? Тайна полишинеля, лол. Вон >>661052 у некоторого китайца тоже распределенное выполнение, в т.ч. на мобильниках.
Аноним 23/02/16 Втр 18:09:18 #132 №663977 
Посаны, а нужно ли учить кресты?
Аноним 23/02/16 Втр 20:17:51 #133 №664119 
14562478714460.jpg
Такой вот вопрос - почему сейчас под "глубоким обучением" в основном понимаются сверточные сети? А как же стыкованные аутоенкодеры и машины Больцмана, вот это все? Уже не в моде?
Аноним 23/02/16 Втр 22:13:36 #134 №664329 
>>664119
Они проще. С аутоэнкодерами очень много возни, а результат неопределенный. К тому же когда стали использовать ReLU юниты вместо сигмоидов, оказалось что можно тренировать их с нуля, вместо инициализации с помощью аутоэнкодеров.
Аноним 24/02/16 Срд 07:12:00 #135 №664768 
Уебывайте на свое Нибиру, рептилоиды аутоэнкодерные
Аноним 24/02/16 Срд 20:17:10 #136 №665396 
Больше всего машинное обучение напрягает тем, что львиная доля прикладных применений - всякие античеловеческие проекты по превращению планеты в криптоантиутопию.
Аноним 24/02/16 Срд 20:45:39 #137 №665435 
14563359400780.jpg
>>665396
>античеловеческие проекты по превращению планеты в криптоантиутопию
Давно этого жду. А ты шел бы отсюда, петушок хипсторский.
Аноним 25/02/16 Чтв 14:16:43 #138 №666209 
>>665396
>львиная доля прикладных применений - всякие античеловеческие проекты по превращению планеты в криптоантиутопию.
Примеры? И почему это должно напрягать? Ты из этих что ли, "диды лаптем щи хлебали, чем мы хуже, нинужОн нам ваш инторнет"?
Аноним 25/02/16 Чтв 14:30:02 #139 №666224 
анон, подкинь инфы про Reinforcement learning
Аноним 25/02/16 Чтв 14:50:05 #140 №666245 
Может у ОПа, или у кого-нибудь еще есть мануалов по парсингу? Всплыла задача напарсить все ивеньы по заданной тематике по всей мурике на определенную дату. Обычные мануалы типа "распарсим кинопоиск 101" уже, получается, не подходят. Нужен какой-то более фундаментальный подход.
Аноним 25/02/16 Чтв 14:56:15 #141 №666250 
>>666245
https://en.wikipedia.org/wiki/Web_scraping , не?
Аноним 25/02/16 Чтв 17:26:16 #142 №666404 
>>666224
бамп
Аноним 25/02/16 Чтв 18:20:15 #143 №666448 
>>666245
Selenium жи
Аноним 27/02/16 Суб 15:48:38 #144 №668735 
14565773188830.png
Что-то совсем тред протух. Наброшу: сверточная сеть по-сути гибрид. Слои свертки и подвыборки это одна часть, полносвязная сеть для классификации - другая. Почему никто не догадался вместо полносвязной сети или enegrgy-based эвристик использовать что-то еще? Векторное квантование там, адаптивный резонанс, нечеткий вывод, вот это все?
Аноним 27/02/16 Суб 18:14:12 #145 №668895 
>>668735
Все что не дифференцируемо (а значит, не может в backpropagation ) - не нужно.
Аноним 27/02/16 Суб 18:48:01 #146 №668921 
>>668895
Но в бекпропагейшн очень много что может. В частности - все нечеткие модели.
Аноним 27/02/16 Суб 21:29:17 #147 №669130 
>>668921
Ну сделай, покажи результаты. Опубликуйся в архиве, выложи код под тензорфлоу на гитхаб, отрасти бороду и будешь почти своим в тусовке.
Аноним 28/02/16 Вск 20:30:03 #148 №670228 
А в data science есть что-то типа вакансий джуниора? Вот я сейчас на 4 курсе, раньше какое-то время работал в энтерпрайзе и мне не особо понравилось. После универа надо идти работать, и я бы предпочел работу за еду в дата саенсе работе за нормальные деньги в энтерпрайзе. Но опыта у меня нет, только распознавал всякие цифры на kaggle и писал лабы в универе. Сейчас прохожу курс от шада на курсере. В матешу могу.

В яндексы и гуглы меня, скорее всего, не возьмут, потому что я туповат и не особо задрот. Существуют ли не требующие неебического объема знаний вакансии в этой области?
Аноним 28/02/16 Вск 23:04:16 #149 №670470 
>>670228
Бамп вопросу от другого анона. Похожая ситуация, закончил бакалавриат, пошел в тыртырпрайз. Теперь понимаю как же это отсосно, все эти контроллеры, сервисы, вьюшки. Даже несмотря на заработок.
Аноним 29/02/16 Пнд 02:27:20 #150 №670775 
>>668921
В нечеткой логике используется, как правило, какой-нибудь сигмоид, т.е. функция с насыщением, у которой градиенты на краях стремятся к нулю, это приводит к замедлению (вплоть до бесконечности). По этой причине перешли на ReLU, а ты хочешь вернуть сигмоиды.
Аноним 29/02/16 Пнд 02:28:48 #151 №670776 
>к замедлению
К замедлению обучения.
Аноним 29/02/16 Пнд 02:33:22 #152 №670780 
Ну чё, анончики, кто из вас уже сколько бабла поднял на этом дейта-саенсе?
[1] Аноним 29/02/16 Пнд 10:00:31 #153 №670872 
>>670780
Это такой же развод как и нейронные сети.
Аноним 29/02/16 Пнд 12:55:26 #154 №670957 
>>654749
Буду очень благодарен, если расскажежешь кулстори как учился, какие материалы/курсы использовал.
Аноним 29/02/16 Пнд 14:26:15 #155 №671012 
14567451758140.png
>>670775
Ок, сигмоиды в сверточных сетях и правда не нужны. Но вот там есть операция max-pooling, выбор максимального значения. Если там использовать не максимум, а какую-нибудь нечеткую параметризованную т-конорму?
Аноним 29/02/16 Пнд 18:17:15 #156 №671263 
>>671012
Максимум очень быстрый на GPU (даже по сравнению с average pooling), а эффективность тут решает больше, чем йоба-алгоритмы. Хз, можешь попробовать, благо с theano это недолго, можешь и статейку напишешь.
Аноним 03/03/16 Чтв 21:33:38 #157 №674794 
Помогите дебилу пожалуйста. В машинном обучении я полный ноль, никогда не интересовался. Сейчас передо мной стоит практическая задача, которую нужно было сделать ещё вчера.

Есть определенная функция - черный ящик, что внутри мне неизвестно, на вход принимает 5 чисел [-100, 100], на выходе единица или ноль. Есть огромная выборка данных для тренировки, требуется симулировать поведение этой функции на новых данных.

Я не прошу решение, подскажите в какую сторону, по каким ключевым словам копать, желательно с примерами на java/python, любые библиотеки. Полностью погружаться в тему нет времени.
Аноним 03/03/16 Чтв 21:43:33 #158 №674812 
Подписался на тред. Только питоныч годен под эту сферу?
Аноним 03/03/16 Чтв 21:55:15 #159 №674831 
>>674794
Делишь твою огромную выборку на 2 части - тренировочную и проверочную. На тренировочной тренируешь machine learning алгоритм классификации (их много, начни с SVM), а проверочной тестируешь, хорошо ли натренировалось. Питон? Начни отсюда - http://scikit-learn.org/stable/modules/svm.html
Аноним 04/03/16 Птн 04:03:30 #160 №675338 
>>670957
Кому нахуй моя кулстори нужна, если я даже работу еще не нашел?

Все стандартно - случайно набрел на John Hopkins курс на курсере, потом сел на кагл. На кагле очень часто очень много инфы кидают на статейки. Изредка поглядываю другие курсы на курсере, обычно все сам гуглю. Пробел в знаниях размером океан. Оттого и не берут.
Не будь как я, вкатывайся в шад какой-нибудь и зубри что дают.
sageАноним 04/03/16 Птн 14:21:46 #161 №675660 
>>675338
Спасибо, что ответил. Я и не расчитывал на историю "из грязи в князи". Подумываю насчет вката из веб-разработки вот и интересно стало. Спасибо за совет.
Аноним 04/03/16 Птн 16:15:34 #162 №675827 
>>674831
>2016
>SVM
Можешь за этот алгоритм пояснить? Там какое-то сильное колдунство, я так и не въехал во все эти ПРОСТРАНСТВА ВАПНИКА-ЧЕРВОНЕНКИСА.
Аноним 04/03/16 Птн 16:17:14 #163 №675830 
>>674812
Нет, почти все есть под R.
Аноним 04/03/16 Птн 17:11:32 #164 №675874 
>>675827
Этот алгоритм хорош тем, что его можно рассматривать как черный ящик. Он очень прост в эксплуатации, даешь на вход классы, он выдает тебе оптимальную гиперплоскость, которая их разделяет. Все колдунство заключается в том, что такое оптимальная гиперплоскость и как ее построить (а также так называемый kernel trick который позвоялет вместо гиперплоскости использовать какую-то другую гиперповерхность). Посмотри как работает 2д случай для получения интуиции и сойдет.
Аноним 04/03/16 Птн 19:09:44 #165 №676044 
Кто-то проходит на курсере "введение в машинное обучение" от вшэ? У меня там трабла. Нужно просто построить решающее дервео, которое будет предсказывать выживание на Титанике по признакам 'Pclass', 'Fare', 'Age', 'Sex' и сказать, какие признаки самые важные. Вот код
http://pastebin.com/0KNRxq8M
Ну я так понял, что самые важные признаки - это 'Fare' и 'Age'. При сабмите курсера не принимает и пишет
> Обратите внимание как нумеруются признаки у feature_importances_.
А как понять как они нумеруются? Нагуглить ниче не удалось. Я сделал предположение, что они нумеруются в таком порядке, в каком они были в оригинальном датафрейме, когда он только был загружен. Но так у меня тоже не принялось.
Аноним 04/03/16 Птн 19:28:51 #166 №676116 
14571089315130.jpg
>>676044
Успехов.
Аноним 04/03/16 Птн 19:37:28 #167 №676170 
>>676116
Не понял. Что из себя представляет dataobj? Почему у тебя такие значения feature_importances получились?

Алсо, если я после своего кода допишу features.head(), то у меня там признаки в порядке Pclass Fare Age Sex.
Аноним 04/03/16 Птн 19:43:21 #168 №676195 
>>676170
Датасет надо чистить от nan потому что, dropna() функция такая есть. Вот такому значит порядку и соответствуют значения.
Аноним 04/03/16 Птн 19:44:04 #169 №676199 
>>676170
А dataobj это признаки как раз, коряво поименовал.
Аноним 04/03/16 Птн 19:53:03 #170 №676214 
>>676195
Так в коде, который я скинул, я все так и делаю.
Аноним 04/03/16 Птн 19:58:50 #171 №676222 
>>676214
посмотрел, неясно, отчего результат другой, наверно ты фартовый.)
Аноним 04/03/16 Птн 20:06:13 #172 №676239 
>>676214
Знаешь, что? Попробуй уже выделив из датасета целевой вектор и признаки делать дроп. Вот что. Только пусть они будут в одном подмножестве при этом, разделишь после.
Аноним 04/03/16 Птн 20:45:38 #173 №676300 
>>675830
Он уже на свалке истории.
Аноним 05/03/16 Суб 14:12:28 #174 №677094 
>>676300
Потому что ты так сказал? Очень весомо, да.
Аноним 05/03/16 Суб 17:46:19 #175 №677482 
>>652472 (OP)
ОП, спасибо за подборочку! Где учишься\работаешь?
Аноним 07/03/16 Пнд 11:59:13 #176 №679202 
Непроебамп
Аноним 07/03/16 Пнд 15:30:49 #177 №679318 
>>652481
Матстат другими словами.
Аноним 07/03/16 Пнд 15:43:05 #178 №679329 
>>652472 (OP)
Проиграл с пика. Машинное обучение ДЛЯ ХАЦКЕРОВ, лол.
Аноним 07/03/16 Пнд 15:57:13 #179 №679339 
>>652481
Искусственный интеллект, самообучающиеся системы, rocket science. Чтобы двигать человечество вперед к светлому будущему и по ходу дела ссать на энтерпрайзных и веб-макак, ненужный биомусор и обслугу бизнеса.
Аноним 07/03/16 Пнд 16:05:54 #180 №679345 
>>679329
И что смешного?
Аноним 07/03/16 Пнд 16:06:12 #181 №679347 
14573559728470.jpg
Каглогороховые мудилы просто заставляют умиляться https://www.kaggle.com/c/santander-customer-satisfaction Задача - классифицировать данные, 2 класса, матрица на 56 мб, триста с небольшим столбцов. Варианты, предложенные этими гейниями:
- главные компоненты
- мегагитлермодная китайская библиотека xgboost
- диплернинг, ну куда же без него)))
Рандом форест не заметил, но наверняка на втором-третьем месте после китайской параши. Все, что больше 2х лет назад появилось - нинужно и "на свалке истории". Ну кроме главных компонентов. Пиздец, деградантство.
Аноним 07/03/16 Пнд 16:07:22 #182 №679348 
>>679339
Мда, пойду читать дискретку.
Аноним 07/03/16 Пнд 17:21:57 #183 №679412 
Видал аж целую одну вакансию на этом вашем машин лернинге, на жава. Тема интересная, но совершенно не коммерческая.
Аноним 07/03/16 Пнд 17:28:48 #184 №679420 
>>679412
>Тема интересная, но совершенно не коммерческая.
Дяде не продаться за копейки? Потеря потерь. На том же кегле соревнования от 25к, не рублей. Есть и 200к.
Аноним 07/03/16 Пнд 18:08:07 #185 №679453 
>>679420
ну иди соревнуйся. только вот с реальным написанием самообучающихся структур это ничего общего не имеет. тема реально не финансируется. там нужны долгие годы самооубучения, которого у обычных крудоклепов нет, ибо доширак надо покупать на что-то.
Аноним 07/03/16 Пнд 18:17:01 #186 №679462 
14573638212460.png
>>679453
>тема реально не финансируется.
Ясно.
Аноним 07/03/16 Пнд 20:12:53 #187 №679632 
>>679462
попил без результатов.
Аноним 07/03/16 Пнд 22:51:10 #188 №679838 
>>679462
Это не количество AI проектов в Гугле, а количество проектов, использующий конкретный алгоритм.
Раньше они, возможно, использовали другой алгоритм, например SVM.
Аноним 07/03/16 Пнд 22:55:14 #189 №679842 
>>679347
Дипленинг появился больше 5 лет назад.
Аноним 08/03/16 Втр 01:38:03 #190 №679990 
Простите, ребятки, что-то я обосрался с поддержкой треда. На скроллинг двачей времени вообще не остается. Я обещал подкидать инфы про зрение, но сейчас уже не буду точных сроков давать - сделаю как подразгружусь.
>>663977
Для исследований кресты не нужны, а вот пилить осязаемые системы - да, нужны. Мапредьюсы, аллокаторы памяти, йоба алгоритмы для оптимизаций в машинном обучении, etc.
>>661747
Это была внутренняя система гугла, с кучей говнокода и перекрестных ссылок с другими системами. Вычесать все это из кода есть расчистка авгиевых конюшен.
>>670470
У меня похожая ситуация была - работал в ява-говноэнтерпрайзе. Не в силах выдержать, сбежал оттуда, засел за книжки и через определенное время усердного задрачивания таки стал магом.
Выше я кидал ссылки (CTRL+F связной), куда можно попробоваться тыкнуться на младшие позиции.
Аноним 08/03/16 Втр 03:37:22 #191 №680026 
>>679990
Расскажи сколько у тебя опыт работы программистом был, когда ты решил перекатиться, и сколько в деньгах потерял по сравнению с тем когда ушел из коммерческого программирования, и сумел ли по деньгам наверстать разницу и сколько примерно по времени это у тебя заняло.
Аноним 08/03/16 Втр 14:05:13 #192 №680247 
ОП, ты охуенен, продолжай в том же духе. Подписался на тред.
мимокрудошлеп
Аноним 08/03/16 Втр 17:37:35 #193 №680536 
14574478552930.jpg
>>680026
Если считать в говнерублях, то з/п выросла охуеть как сразу по переходу. В валюте же на 30-35% выросла, если сравнивать с последним рабочим местом. Плюс сейчас на работе социалка огромная, а на предыдущей она так себе была. Думаю, её можно рассматривать как +10-15% к з/п. Но есть пара моментов. Во-первых, я рачил на апворке и у друга-эмигранта по удаленке много времени. Все это позволило мне не стесняясь вписать себе стаж (кресты и питон) в резюме. Во-вторых - в промежуток между работами я успел бакалавриат закончить, может это еще как-то на з/п повлияло, хз.
>>680247
^.^
Аноним 08/03/16 Втр 18:26:26 #194 №680625 
>>679347
Деградантство это сидеть на свалке истории и в бессильной злобе потрясать тощими кулачонками в сторону уходящего вперед человечества. Ну то есть то что ты делаешь.
Аноним 11/03/16 Птн 19:17:37 #195 №684041 
14577130579870.webm
Этими вашими сетями можно раздеть одетую девушку? Почему еще никто не запилил?
Аноним 12/03/16 Суб 00:15:16 #196 №684585 
>>684041
Те кто могут это сделать не являются спермотоксикозными девственниками, а обычно снимают твою мамашу за даллары и ебут во все щели.
Аноним 12/03/16 Суб 13:11:26 #197 №684889 
>>684585
Хуйню спизданул. Любой человек хочет созерцать обнаженное тело, поскольку оно красиво. Погромизд нейронок не будет этого отрицать, поскольку он в большинстве атеист, а значит умеренный моралфаг. Еще такая сеть имеет коммерческий интерес.
Аноним 12/03/16 Суб 14:05:49 #198 №684916 
>>684889
Поэтому ему надо въебывать дохуя часов и сил чтобы получить то, из чего интернет итак состоит на 90%? Нахуй пошел, залетный даун.
Аноним 12/03/16 Суб 14:08:08 #199 №684920 
>>684889
Я не хочу, например. 99% тел уродливы, обвислые жопы, трясущиеся пузяки, всратые лица.
На твоей вебмке ужасное лицо лупоглазое у тян, трясущийся ПУЗЯК и другие радости.
О Т В Р А Т И Т Е Л Ь Н О
Аноним 12/03/16 Суб 14:17:30 #200 №684931 
14577814503440.png
>>684916
Да.
>>684920
А мне аниму отвратительна.
Аноним 12/03/16 Суб 14:25:03 #201 №684934 
>>684931
Мне и аниму отвратительна, щас бы нахуяченые на флэше мультики с одинаковыми плоскими персонажами но разными прическами посмотреть, эхх.
Она все ещё отвратительна, если для тебя она ок, представляю какой ты всратый, кек
Аноним 12/03/16 Суб 14:35:08 #202 №684935 
>>684041
>Этими вашими сетями можно раздеть одетую девушку?
Это и без сетей можно сделать. Тебе не дают != никому не дают.
Аноним 12/03/16 Суб 14:41:44 #203 №684938 
>>684935
Проиграл
Аноним 12/03/16 Суб 19:31:39 #204 №685295 
>>684935
Ты немного не понял. Есть такие тянки с которыми не светит ни тебе ни мне ну никак, а посмотреть на них хочется чисто в эстетических интересах.
Аноним 12/03/16 Суб 19:49:59 #205 №685310 
>>685295
А то ты там что-то уникальное увидишь.
Аноним 14/03/16 Пнд 11:49:25 #206 №687320 
Анончики, сейчас стартовали курсы на русском языке от МФТИ по теории графов, комбинаторике и теории вероятности. Ищите в списке курсов, есть поиск по универу https://openedu.ru/course/
Аноним 14/03/16 Пнд 11:51:18 #207 №687324 
>>687320
А, ну и теория игр от них же, годная вещь для конструирования интеллектуальных агентов
Аноним 14/03/16 Пнд 14:20:27 #208 №687448 
На хаскелле есть чо?
Аноним 14/03/16 Пнд 21:37:45 #209 №688060 
Посаны, почему так? Я просто не представляю, с чем это может быть связано.
http://pastebin.com/dGGLDSx7
Аноним 14/03/16 Пнд 22:35:42 #210 №688141 
>>688060
Чудеса динамической типизации, наслаждайся гвидобейсиком.
Аноним 14/03/16 Пнд 23:26:04 #211 №688211 
14579871640810.webm
>>658408
Кто что скажет про этот курс и его инструкторов? Только по конструктиву, а не ТРАЛЕНК ТРАЛЕНК ))))))))
Аноним 15/03/16 Втр 03:08:47 #212 №688428 
14580005280450.png
>>687320
Фу, блядь, лектор колорадку носит.
Аноним 15/03/16 Втр 03:30:16 #213 №688441 
14580018165350.jpg
>>688428
Фу, блядь, живой хохол.
Аноним 16/03/16 Срд 06:10:02 #214 №689506 
>>688441
Не он, но русский и тоже называю это колорадкой. А лектору политические взгляды вообще не стоит демонстрировать.
Аноним 16/03/16 Срд 06:15:12 #215 №689507 
>>689506
У тебя двоемыслие какое-то.
Аноним 16/03/16 Срд 07:56:24 #216 №689520 
>>689506
Двачую.
Аноним 16/03/16 Срд 08:37:24 #217 №689533 
>>689506
Эта ленточка и была придумана в свое время, чтобы никаких политических взглядов не выражать. Если ты видишь тут политику, то ты хохол.
Аноним 16/03/16 Срд 11:58:08 #218 №689614 
>>689533
А в последнее время стала символом вполне определенных политических взглядов. Другой пример - свастика.
Аноним 16/03/16 Срд 14:03:37 #219 №689692 DELETED
>>689614
Только у хохлов.
sageАноним 16/03/16 Срд 17:19:54 #220 №689840 DELETED
>>689692
Под кроватью поищи хохлов. Зарепортил.
Аноним 16/03/16 Срд 22:53:25 #221 №690207 
Ребзя! А как вы относитесь к етому петухану? http://blogs.barrons.com/techtraderdaily/2016/03/14/we-are-coming-for-you-tesla-and-you-too-google-says-hacker-hotz/

Театральность таки привносит в ai. И правда, новый интернет наступает походу. Мне с дивана все видно
Аноним 17/03/16 Чтв 00:30:34 #222 №690329 
>>690207
Его прога не строит аналитическую модель происходящего на дороге. Этим он здорово облегчил себе задачу, но доказать, что она знает и соблюдает все правила будет невозможно. Это тупиковая ветвь. Гугл сможет продолжать наращивать девятки в доле правильных решений, а он не сможет, потому что количество требуемого обучения будет рости экспоненциально, потребуется более мощный чип и т.д.
Зато можно будет впечатлять инвесторов результатами и жаловаться на Маска, когда тот откажется признавать его поделие убийцей Теслы.
Эта схема получения инвестиций давно отработана изобретателями вечных двигателей. Бегай себе вокруг прибора, рассказывай про неонку и про то, как тебя ущемляют проклятые учёные, да выпрашивай денег на новый специальный подшипник, с которым проклятое трение будет наконец побеждено.
Аноним 25/03/16 Птн 15:27:26 #223 №697890 
14589088464620.jpg
На правах непроебампа, там некоторый китаец http://handong1587.github.io/deep_learning/2015/10/09/dl-frameworks.html запилил подборку ссылок на библиотеки и фреймворки для диплернинга.
Аноним 25/03/16 Птн 23:58:12 #224 №698329 
>>688428
Не гони на Савватеева, он няшка и хороший человек. Школьникам лекции по всей России читает (про группы).
Пускай даже у него стольже экзотичные политические взгляды как у Вербицкого, только наоборот.
Аноним 27/03/16 Вск 16:35:34 #225 №700092 
14590857348780.jpg
Есть кто помимо меня в данный момент участвует в blackbox соревновании ?
Аноним 27/03/16 Вск 16:40:25 #226 №700107 
Зачем в нейронных сетях используется нелинейная передаточная функция ?
В SVM ядро понятно, нелинейное преобразование пространства. В нейросетях такая же цель ?
Или для условия дифференцируемости ? Или чтобы ограничить сверху ? Поясните плез.

>>666224
>Reinforcement learning
https://github.com/junhyukoh/deep-reinforcement-learning-papers
Аноним 27/03/16 Вск 16:58:28 #227 №700142 
>>700107
Допустим она у тебя линейная.
Первый слой, x0 вход, x1 выход, X0 - веса
x1=X0x0
Второй слой, x1 вход, x2 выход, X1- веса
x2=X1
x1
Подставляем:
x2=X1X0x0
Т.е. "нейросеть" твоя оказывается тупым линейным классификатором, сколько бы у нее слоев не было.
А теперь вводим нелинейность:
x2=f(X1f(X0x0))
Все, теперь уже так не получится.
Аноним 27/03/16 Вск 17:39:43 #228 №700218 
14590895839890.jpg
>>652472 (OP)
Не обращал внимание. У меня такие же пингвинчики есть)))
Аноним 27/03/16 Вск 18:03:25 #229 №700282 
14590910051320.png
>>700142
Первый слой является обычной линейной регрессией.
Согласен.
Дальше идёт линейная регрессия от каждого нейроная входного слоя и т.д.

Это не объясняет почему используют функцию активации. Тот же ReLu это max(0,w), просто передаёт ноль если значение нейрона если он меньше нуля. Хотя если вставить просто линейную функцию, нихуя обучиться не получится. Где магия ?
Аноним 27/03/16 Вск 18:44:33 #230 №700355 
14590934734230.png
Ида, ещё вопрос
Есть способы с помощью нейросети обобщить функцию ?
Допустим если мы предъявляем сети информацию которая не входила в диапазон обучения, то ясень красень поведение функции предсказать не получится. Можно ли как то это исправить, не преобразуя признак ? Рекуррентные сетки ?
Аноним 27/03/16 Вск 18:54:02 #231 №700364 
>>700092
Есть. Пробовал реализовать алгоритм deep Q-learning - не сходится, хотя это вроде его фишка, нужно много тюнить параметры, чтобы сошёлся. Хочу попробовать model-based подход, а у тебя какие успехи, анон?
Аноним 27/03/16 Вск 18:58:03 #232 №700367 
14590942839230.jpg
Я вот нихуя не понимаю смысл этого машинного обучения. Скажем, имеется n точек (x, y) и по ним нужно найти неизвестную функцию. Каким образом решается что лучше, просто соединение точек линиями/линейная регрессия/нейронные сети/xgboost?
Аноним 27/03/16 Вск 19:05:02 #233 №700377 
>>700364
Аналогично, пробовал его, тоже не сходился (или сходился но слишком медленно, я так и не понял)

Я думаю всё из-за того что в самом чёрном ящике интересная система вознаграждения. Там награда выдается не через каждый шаг, а за одно действие которое аккумулируют награду 4 предыдущих шагов, при том во время выбора действия во время этих 4 шагов награды получаешь ноль. (то-есть узнаешь правильный ли выбор через 4 шага)

Тут возможно несколько решений. Добавить рекурентные связи, подавать на вход историю, или как то обобщать это всё.

Я сейчас тоже пробую другим путём пойти, пока мучаю нейроэволюционные модели.
Аноним 27/03/16 Вск 19:13:01 #234 №700392 
>>700367
В курсе что любую функцию можно представить в виде ряда ? У этого ряда есть коэффициенты, если подобрать их так чтобы минимизировать ошибку, то и получится функция которая отражает данную зависимость.
Аноним 27/03/16 Вск 19:35:54 #235 №700428 
>>700377
Как раз сейчас пробую взять историю и предсказывать следующее состояние и награду, чтобы потом совместить с каким-нибудь поиском по дереву.
Кстати, не пытался по-честному, без дизассемблирования, реверсить blackbox? Я пока только посмотрел на матрицу корреляции между компонентами вектора состояния и там явно есть сильно связанные пары. Ещё интересно ведёт себя 36-тая компонента, она изменяется от -1 до 1 и повышать её можно действием 1, а снижать 3.
Аноним 27/03/16 Вск 19:51:21 #236 №700439 
>>700428
Ну не реверсить, просто изучать (ибо не думаю что можно адекватно реверснуть, слишком много оверхеда питоновского)

То что понял указал выше, ещё заметил что одно небольшое изменение может вызывать отклик среды на много шагов вперёд. Я думаю они за основу брали что то фрактало-подобное.

Пробовал тоже предсказывать, но особо не получилось (как раз из-за этого пробела в отсутствии награды), думаю что нужно предсказывать на несколько шагов вперёд.
Аноним 27/03/16 Вск 19:53:55 #237 №700445 
14590976351140.gif
>>652481
Для того, чтобы выбивать гранты, пиарить университеты и говнокурсы на моок платформах, ну и конечно же, сосать хуи без опыта реальной работы и за бесплатно решать задачи для богатых дядек на Кегеле, который организовал хитрый жид.
Аноним 27/03/16 Вск 20:15:35 #238 №700473 
Тут есть ШАДовские аноны или те кто учился в ВШЭ не по видео-лекциям ?
Аноним 28/03/16 Пнд 03:45:02 #239 №700750 
>>700282
Ты меня жопой прочитал.
>Первый слой является обычной линейной регрессией.
Неправильно. Линейная регрессия - это способ подобрать коэффициенты матрицы (X в x1=Xx0), а тебе здесь это не важно, важно другое, формула первого курса матричного умножения, что ABx=(AB)x. То есть любая твоя нейросеть без функции активации сведется к однослойной сети. Поэтому в многослойных сетях без функции активации нет никакого смысла - это та же самая формула x1=Xx0.
>Где магия ?
Магия в том, что линейный классификатор работает только с линейно разделимыми задачами, т.е. когда в твоем многомерном пространстве между классами можно провести гиперплоскость.
Нейросеть же каким-то образом преобразует (т.е. растягивает, сжимает и т. п.) пространство, чтобы последнему слою уже достаталась линейно-разделимая задача. Вот этот блог http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/ прочитай блог целиком, он того стоит.
В теории вид нелинейной функции особо не важен, но на практике есть ограничения, вызыванные способом обучения через backpropagation - насыщение вызывает проблему очень маленького градиента, слшком большие числа вызывают погрешности вычисления и т. п.
Аноним 28/03/16 Пнд 11:14:03 #240 №700834 
>>700750
благодарю, да, действительно жопой прочитал
блог кстати крутой воистину
Аноним 29/03/16 Втр 11:32:14 #241 №701827 
>>700473
Собираюсь поступать в этом году.
Если смогу, лол
Аноним 30/03/16 Срд 23:23:32 #242 №703447 
>>700473
Что тебя интересует?
Аноним 31/03/16 Чтв 11:53:42 #243 №703785 
>>703447
Как учат, какие видишь перспективы, ну и в целом пару комментариев.
Аноним 02/04/16 Суб 14:55:26 #244 №705883 
Непроебамп
Аноним 02/04/16 Суб 16:41:32 #245 №705979 
blackboxchallenge.com/
Пока что в конкурсе нет победителя. Ну что, макаки, сможете переиграть хотя бы бэйзлайн - линейную регрессию, идущую в составе стартового набора?
я не смог
Аноним 02/04/16 Суб 18:00:37 #246 №706042 
>>705979
>пистон
Атятяй. Спасибо, но нет. Пущай вылаживают что-то не привязанное к конкретной параше.
Аноним 02/04/16 Суб 18:03:19 #247 №706045 
>>706042
>вылаживают
Аноним 02/04/16 Суб 18:22:23 #248 №706062 
>>706042
Окстись, на данный момент весь МЛ в питоне происходит.
Впрочем, если ты не в теме, тебе ничего не светит все равно.
Аноним 02/04/16 Суб 22:37:51 #249 №706318 
>>705979
Кто-нибудь MC-AIXI-CTW пробовал?
Аноним 02/04/16 Суб 22:53:23 #250 №706333 
Котаны, а кто-нибудь промышленным Data Science здесь занимается? Интересуют технологии, используемые бизнесе и примеры решаемых задач.
Сейчас занимаюсь статистикой и ML в университете, по пути изучая AGI.
Аноним 02/04/16 Суб 23:14:51 #251 №706366 
>>706333
R и Apache Spark(Spark MLib)
Знакомый пилил подсчет клиентов по видеопотоку в одной конторе, рассказывал что в OpenCV есть немного machine learning.
Аноним 02/04/16 Суб 23:20:17 #252 №706368 
>>706366
Насколько сложные модели используете, кодите ли их вручную? Ебётесь ли с выводом формул для вывода в сложных моделях?

Есть, можно по HOG'ам пытаться считать, да.
Аноним 03/04/16 Вск 00:56:05 #253 №706445 
>>705979
как они линейную регрессию обучили, есть идеи ?
Аноним 03/04/16 Вск 01:02:29 #254 №706456 
Все эти конкурсы - хуита. Как и всё машинное обучение в трейдинге. Ну обучился ты на прошлой выборке. Это просто показывает, что получилось найти идеальные магические константы. А на следующей закономерно соснешь. Никакой пользы.
Аноним 03/04/16 Вск 01:07:31 #255 №706461 
>>706456
> А на следующей закономерно соснешь
Как и в жизни.
Аноним 03/04/16 Вск 01:09:44 #256 №706463 
14596349846070.png
>>706456
если выборка достаточно хорошая, и ты смог правильно обучится, то и получится модель которая хорошо обобщает некую зависимость
Вот видишь этот синус ?
А это нихуя не синус, это просто точки, ты сам у себя в голове обобщил до синуса (считай гештальт образ)
Аноним 03/04/16 Вск 01:17:33 #257 №706467 
>>706456
а на счёт трединга
есть некие тренды, тренд не может длится вечно, рано или поздно он закончится в связи с достижением некой точки насыщения. Сама идея колеблющегося тренда уже некое обобщение. Осталось угадать на сколько долго будет идти тренд, чтобы сделать правлиьное действие. И на это тоже есть некоторые вероятностные эвристики. Те же обычные китайские свечи, они помогают выявить некие паттерны.
Аноним 03/04/16 Вск 01:18:50 #258 №706468 
14596355306580.png
>>706467
Лол
Аноним 03/04/16 Вск 01:19:51 #259 №706470 
>>706468
японские свечи, пардон
Аноним 03/04/16 Вск 01:22:03 #260 №706473 
>>706318
Это сугубо теоретическая вещь пока что.
>>706445
Вопрос если не на миллион долларов, то тысячи на четыре, лол. Если знать как они это сделали и подставить вместо регрессии более сильную модель, почти наверняка можно круто подняться. Судя по постам от админа, сейчас все в основном пытаются модифицировать регрессию.
Аноним 03/04/16 Вск 01:25:20 #261 №706476 
>>706463
В том-то и дело, что нет никаких зависимостей. Можно выиграть только на временном лаге, опередив остальных лошков с кухни. Или быть инициатором = иметь инсайд. Все стратегии не учитывают влияние самого бота на рынок. Тут явный эффект бабочки.
Если и удается найти какую-то слабоплюсовую стратегию, весь профит сжирают: комиссии брокеру + зарплата прогерам/твое время + аренда вычислительного кластера.
В общем, в трейдинге, как и в покере, всегда выигрывает только заведение. И немного хлеба перепадает верхушке самых быстрых и мощных.
Впрочем, в других областях машинное обучение вполне легитно.
Аноним 03/04/16 Вск 01:26:08 #262 №706478 
>>706476
> В общем, в трейдинге, как и в покере, всегда выигрывает только заведение. И немного хлеба перепадает верхушке самых быстрых и мощных.
>>706461
Аноним 03/04/16 Вск 01:27:34 #263 №706480 
>>706476
В чем твоя проблема? Не занимайся трейдингом.
Аноним 03/04/16 Вск 01:32:04 #264 №706484 
>>706476
>нет никаких зависимостей
Очевидно есть. Тебе только нужно построить как можно более точный прогноз. И строить прогноз нужно не на одну сделку, а на месяц вперёд для управления рисками.
Пример из фундаментального анализа. Представь что завтра вышла новость что билла гейтса застукали как он жёстко выдрал несовершеннолетнего тайского трапа и теперь ему грозит срок. Это как то бы отразилось на котировках мелкософта ?
Или из технического анализа если тред пошёл вниз, то он на следующем шаге пойдет вверх ? нет! на то это и тренд.
Просто чем дальше горизонт планирования, тем больше вероятность что ты обосрёшься (или сорвёшь куш), нужно искать оптимум исходя из рисков.

>всегда выигрывает только заведение
очевидно тогда бы никто не торговал
Аноним 03/04/16 Вск 01:35:45 #265 №706488 
>>706484
Он совершенно прав, а ты слушай, что тебе умные люди говорят, и мотай на ус.
>очевидно тогда бы никто не торговал
Очевидно в лотерею никто не играет.
Аноним 03/04/16 Вск 01:38:42 #266 №706489 
>>706488
Да, хуле вы на трейдинге то зациклились?
Есть же системы управления, которые сейчас очень тесно свзяна ы с RL, есть задачи CV, которые частично помогают автоматизировать проихводство. На Байесовски сетях вон обучаемые экспертные системы строят.
Аноним 03/04/16 Вск 01:43:23 #267 №706492 
>>706489
С такой точкой зрения можно вообще критиковать любые алгоритмы решения некоректных задач. Тогда как умение решать некоректные задачи отличает хорошего математика от зубрилки из второсортной шараги.
Аноним 03/04/16 Вск 01:48:20 #268 №706495 
>>706488
Он утверждает что нет зависимостей, я говорю что есть и указываю на них, так что я прав пока не доказано обратное.

Я ещё могу согласится с тем что трейдинг это ещё один лохотрон по вытягиванию денег из людей. Игра с нулевой суммой, то да сё.
Да, заведение оставляет себе некую фиксированную комиссию, но где остальные деньги ?
Они перетекают от одного человека к другому.
И кто то, кто считает себя ниибацца букмекером проебывает, а человек с алгоритмами и холодным расчётом постепенно копит у себя осадок.
Это как торговля в реальной жизни.
Ты можешь купить нечто заранее если считаешь что в скором времени цена на это подымется, а потом продать по завышенной цене, чем не ТРЕЙДИНГ ?
Аноним 03/04/16 Вск 01:54:38 #269 №706498 
>>706495
Двачую, читал статью на гиктаймсе про лабу, где чувак финансировал исследования, занимаясь трейдингом.
Аноним 03/04/16 Вск 01:57:51 #270 №706500 
>>706484
>Представь что завтра вышла новость что билла гейтса застукали как он жёстко выдрал несовершеннолетнего тайского трапа и теперь ему грозит срок
Выиграют самые быстрые: журналюги, уборщицы гейтса, мамка трапа.

Вот смотри. Каждый человек, принимает в своей жизни, допустим, 20 рисковых решений. Ну или за него их принимает среда. Мат. ожидание каждого - околонулевое. Для простоты пусть это будет система Double or nothing. Так вот среди всех людей найдется в среднем (7*10^9 / 2^20) = 6675 человек, которые выиграют все 20 выставлений.
Представим, что при рождении человеку дают 100$. После череды удвоений они станут 104 857 600$. И это просто за то, что человек находится в верхней части распределения по удаче. Он тупо может пойти в казино, поставить 20 раз на красное и стать миллионером (не учитываем комиссию заведения, которое выигрывает с каждой ставки).
Конечно, в покере и в трейдинге все менее драматично. Но невозможно точно сказать, что конкретно сейчас работает - твоя стратегия или твоя удача.
У меня были очень плюсовые месяцы и очень минусовые. За 2 года игры в покер я так и не понял, умею ли я играть.
В трейдинге дисперсия еще выше. Всегда будут те, кто сосет, и кто выигрывает 100% депо в месяц при абсолютно одинаковом скилле.
Аноним 03/04/16 Вск 02:09:42 #271 №706513 
14596385828940.png
>>706495
>Игра с нулевой суммой
>Они перетекают от одного человека к другому
Аноним 03/04/16 Вск 02:13:50 #272 №706514 
>>706500
Поэтому я и упомянул про риски. Если ты в целом, за некий довольно долгий отрезок времени показываешь хороший профит, то значит используешь некую хорошую стратегию.

Представь ты кидаешь обычную монетку и загадал (на основании некоторых данных) что он выпадет орлом, очевидно вероятность 50\50. Выпала орлом. Угадал ли ты ? вероятность 50\50. Загадываешь что выпадет решкой, выпала решкой, какова вероятность что ты угадал ? По теореме Баеса, 0.25. И так далее, ты угадываешь. Чем больше ты угадываешь, тем больше вероятность того что твоя гипотеза на основании который ты делаешь выбор работает. Она никогда не станет 100% верной, но будет к ней стремиться.
Аноним 03/04/16 Вск 02:19:14 #273 №706518 
>>706513
Согласен, не с нулевой (между участниками биржи). Но за обслуживание биржевого оборудования нужно платить.

Твоя задача найти такую стратегию, которая приносила бы доход который покрывает это комиссию, всего лишь.
Аноним 03/04/16 Вск 02:28:01 #274 №706523 
>>706514
>какова вероятность что ты угадал ? По теореме Баеса, 0.25
Если у тебя до этого уже выпал орел, то вероятность 0.5. У случайности нет памяти.
Но я понял твою идею. Если человек постоянно в тебя блефует, с каждым его блефом у тебя все больше и больше оснований предполагать, что он блефует всегда.
Но здесь это не действует. Жизнь человека - слишком маленький промежуток времени, чтобы выяснить, кто настоящая причина успеха - сам человек или это просто орел выпал 20 раз подряд.
Трейдинг - очень конкурентная среда. Рынок сжирает одиночек. Если ты внезапно, сидя на диване, попевая чаек, нашел алгоритм, который делает 20% ROI в месяц, скорее всего, тебе повезло.
Аноним 03/04/16 Вск 02:31:34 #275 №706525 
>>706523
Ты не совсем понял.
У тебя есть некая гипотеза на основании которой ты предсказываешь. И на каждом новом событии ты, то обновляешь вероятность того, что гипотеза работает.
https://habrahabr.ru/post/232639/
Аноним 03/04/16 Вск 02:47:19 #276 №706535 
>>706525
Я понял твою мысль. Байес есть Байес, но прогноз есть прогноз.
Пример.
Ты абсолютно точно знаешь, что шанс выиграть - 1/3. Но коэффициент выигрыша - 2. То есть ставки всегда минусовые. Каким-то чудом тебя угораздило сделать 5 ставок. И ты все их выиграл. Будешь ли ты дальше продолжать ставить? Байес говорит, что да, но они не перестанут быть от этого минусовыми.
А теперь представь, что ты не знаешь вероятности выигрыша. А кто-то другой знает. Вот это примерная модель реального мира.
Аноним 03/04/16 Вск 03:07:37 #277 №706547 
>>706535
Плез, пощади
>Ты абсолютно точно знаешь, что шанс выиграть - 1/3
Тогда тебе Байес тут не нужен, раз ты уже знаешь с какой точностью твоя стратегия работает при каждой попытке

Представь такую ситуацию
У тебя есть гипотеза что если ты кинешь камень он упадёт на землю. Изначальная вероятность что твоя гипотеза работает 0.5. Как уточнить эту вероятность ? Сделать эксперимент. Ты кидаешь камни, они падают на землю, по теореме Байеса ты обновляешь вероятность того, что гипотеза объясняет поведение камня. Но тут прилетает Нибиру и твой камень перестаёт падать на землю, притягиваясь Нибиру. Вероятность того что твоя гипотеза работает начинает стремиться к нулю. Но тут нельзя говорить об общей вероятности, потому что поменялись внешние условия.
Аноним 03/04/16 Вск 03:23:26 #278 №706554 
>>706547
Другие игроки не дураки и видят, что прилетело Нибиру. Все начнут ставить против падения камня. В итоге образуется равновесный коэффициент. Только вот оказывается, что Нибиру кто-то управляет. Внезапно он делает крупную ставку на падение камня и отзывает Нибиру. Итог - все соснули.
Аноним 03/04/16 Вск 03:32:17 #279 №706559 
>>706554
Покупаешь большой запас зерна.
На следующий год сжигаешь все поля с зерном, цены на зерно подлетают. Все сельские девчонки твои.
Аноним 03/04/16 Вск 03:34:40 #280 №706560 
>>706554
Покупаешь большой запас зерна.
На следующий год сжигаешь все поля с зерном, цены на зерно подлетают. Все сельские девчонки твои.
Аноним 03/04/16 Вск 03:38:06 #281 №706564 
>>706560
это я к чему. Когда ты можешь влиять на систему, влиять с большим откликом этой системы, да если ещё и с нелинейным откликом, то это уже совсем другая история.
Но в среднем, когда все делают маленький небольшой вклад, руководствуясь одним и тем же правилом, поведение системы довольно хорошо прогнозируется. Даже есть направление науки которое такое изучает, динамический хаос.
Аноним 03/04/16 Вск 14:11:47 #282 №706698 
За последние несколько месяцев отсобеседовали пару десятков кандидатов на позицию ML engineer. Большинство из них это макаки, потыкавшие пару либ на Питоне или Спарк и гордо мнящие себя большими специалистами. У многих отсутствует понимание сути применяемых методов, хотя это в большинстве простых случаев суть несложные вариации на тему матстата и методов оптимизации
Аноним 03/04/16 Вск 14:52:44 #283 №706756 
>>706698
На сколько участие (и если да, занимаемые места) на kaggle коррелирует с теоретической осведомлённостью в предмете ML?
Аноним 03/04/16 Вск 16:07:46 #284 №706810 
>>703447
Нужно ли для поступления в ШАД знать плюсы? Я на них писал только в универе и в асм участвовал. То есть кроме структур данных в STL ничего не знаю.
Аноним 03/04/16 Вск 17:20:21 #285 №706863 
>>703785
В целом, впечатления очень положительные. Жалею, что не пошел в ШАД во время физтеховской магистратуры (которая на мой взгляд довольно бесмыссленна), вместо чего хуи пинал.
Теперь же, одновременная работа и учеба требует сильного напряжения. Хотя это можно воспринимать как тренировку в планировании дел и умении найти баланс.

Не все курсы мне одинаково нравятся. Но, например, курсы Воронцова и Ширяева-Бурнаева невероятно толковые. В них видишь как прикладная математика решает вполне себе конкретные инженерные проблемы. Под "курсом", естественно, понимается не просто смотрение видюшек, а прежде всего решение заданий.

Насчет перспектив, вижу, что выпускники находят себе интересную и хорошооплачиваемую работу как в стенах Яндекса, так и за пределами его и России в т.ч. Понятно, что они изначально были сильными ребятами, так что ШАД ли дал им такую возможность сразу не скажешь.
Для себя же пока решаю вопрос, следует ли продавать душу большим корпорациям за большие деньги, довольствуясь результатом здесь и сейчас, или же продолжать пробовать решать научные задачи, рискуя и через пять лет не достигнуть результата.

>>706810
Ненужно. Требуется лишь хорошее знание математики уровня 2-3 курса (анализ, теорвер, линал).
Аноним 03/04/16 Вск 20:41:41 #286 №707060 
>>706863
>следует ли продавать душу большим корпорациям за большие деньги, довольствуясь результатом здесь и сейчас

какой уровень требуется для того, чтобы начать продавать душу?
на хедхантере полторы вакансии, а реддит говорит, что для работы пхд требуется
Аноним 03/04/16 Вск 23:47:30 #287 №707210 
>>707060
Ну смотри, мои товарищи из этих самых больших корпораций не могут найти себе людей в команды по нескольку месяцев. Российский рынок светлых голов опустел, люди уезжают, никто не хочет сосать рублевый хуй в стране, над которой сгустились тучи, и жители которой ежечасно получают инъекции патриотизма.

Зато! Приходят собеседоваться петушки, называющие себя "дата саентистами", а по факту запустившие несколько раз библиотечки из Спарка. Ну ладно, нет у тебя опыта это нормально. Но у них же аппетиты звериные, они же начинтались в интернете что телки им должны давать, а CEO бросаться в ноги.
Аноним 03/04/16 Вск 23:59:20 #288 №707216 
>>707210
смотри, я тебя и спрашиваю, какой нужно иметь уровень, чтобы не прослыть петушком с библиотечками.


какой карьерный путь предполагается у дата саентиста в россии, к примеру, если даже на западе и в швятой надо быть пхд с опытом, как пишут на реддите
разве есть места, где можно получить коммерческий опыт в этой области, кроме как надрачивать кегели и хакатоны от пчелайна?

то есть нет готового роадмапа, как к этому подступиться, да и на том же хх десяток вакансий и те с несколькими годами опыта

проходить мооки и зубрить математику, чтобы потом сосать хуи без работы?

Аноним 04/04/16 Пнд 00:42:26 #289 №707237 
>>707216
хуи сосать можно и не уча математику
Аноним 04/04/16 Пнд 01:14:00 #290 №707245 
>>707216
>разве есть места, где можно получить коммерческий опыт в этой области, кроме как надрачивать кегели и хакатоны от пчелайна?
Наивно полагать, что кегля и прочие конкурсы будут тебе засчитаны как коммерческий опыт. Коммерческий опыт - это опыт работы по этой теме в конторе, и он ценится на вес золота. Скачать датасет и прогнать его через хгбуст может уже каждая десятая макака, тут никаких нет секретов. А на настоящей работе тебе нужно будет создать этот самый датасет, после чего внедрить свое МЛ-решение. Это 99.9% работы, и опыт в этом мало у кого есть.
Аноним 04/04/16 Пнд 11:24:59 #291 №707431 
>>706863
Такой еще вопрос. Нельзя ли для поступления в дс написать экзамен, скажем, в Екатеринбурге? Просто я живу не в дс, а в конце мая / начале июня у меня в вузе будет своя сессия. В итоге мне придется лететь в дс на пару дней. По бабкам не очень выгодно, да и экзамен какой-нибудь придется пропустить.
Аноним 04/04/16 Пнд 13:31:46 #292 №707504 
>>707216
>какой карьерный путь предполагается у дата саентиста в россии
Никакой, сейчас волна хайпа спадёт и пойдёшь обратно гостевухи писать.
Аноним 04/04/16 Пнд 13:32:57 #293 №707505 
14597659774870.jpg
>>707216
>в россии
Пиз дуль.
Аноним 04/04/16 Пнд 14:41:07 #294 №707536 
14597700673550.png
Посоны, законил универ по специальности Математик (специализация - теорвер и матстат), прошел несколько базовых курсов на курсере и едх, прочел пару книжечек по теме, сделал несколько заданий на Кэггл, умею в программинг, английский.

Откликался на и так мизерное количесво вакансий по дата саенс, машин лернинг, но хуй, всем нужен опыт и чуть ли не пхд.

Какой дальше путь развития? А то мотивации дрочиться в этом все меньше и меньше.
Аноним 04/04/16 Пнд 16:40:54 #295 №707617 
>>707536
PHP?
Аноним 04/04/16 Пнд 17:04:26 #296 №707626 
>>707617
Ну раз не PhD, то PHP, лел.
Аноним 04/04/16 Пнд 23:59:59 #297 №708055 
>>707431
Дам тебе бесплатный совет по жизни - не стесняйся отвественным людям писать и задавать вопросы. Use your words.
Зачем ты спрашиваешь меня, анонима на анимешном форуме?
На странице https://yandexdataschool.ru/admission указана почта, напиши, задай вопрос, дело же важное, взрослым будь.
Аноним 05/04/16 Втр 00:11:12 #298 №708066 
>>706756

Из всех кандидатов только двое что-то там тыкали на kaggle. Я лично больше ценю реальный опыт над реальными проектами, или какой-нибудь свободный код, чем задачки на каггле.

Вакансия и компания очень жирные если что, в Лондоне, т.е. я не думаю, что это просто хорошие люди не идут. Скорее рыночек реально жиденький за пределами мегамонстров типа Google/FB.
Аноним 05/04/16 Втр 00:24:19 #299 №708081 
>>708066
А на kaggle по твоему выдуманные задачки ?
Чем задачи на kaggle отличаются от "реальных" проектов ?
Аноним 05/04/16 Втр 10:17:02 #300 №708222 
>>708066
Откуда у кандидатов может взяться "реальный опыт с реальными проектами" в области, в которой 3.5 вакансии, требующие при этом докторскую степень? Это ж не гостевухи писать.
Аноним 05/04/16 Втр 10:48:21 #301 №708236 
Закончил сегодня курс на курсере от воронцова

Ну и говно. Задания в стиле «вызови функцию из skipy и напиши результат в файлик». Лекции вообще можно было не смотреть, никак не связаны с заданиями, кроме общей темы. Плюс стремное ебало воронцова на пол экрана.
Аноним 05/04/16 Втр 12:22:20 #302 №708337 
>>708236
>вызови функцию из skipy и напиши результат в файлик
А чем по-твоему дата сцаентисты занимаются?
Алсо
>skipy
значение знаешь?
Аноним 05/04/16 Втр 13:57:18 #303 №708427 
>>708337
ПИ
ТОН

Аноним 05/04/16 Втр 14:36:31 #304 №708449 
>>708337
ЛЫЖНЫЙ ПИРОГ
Аноним 05/04/16 Втр 14:51:50 #305 №708462 
>>706473
>Судя по постам от админа, сейчас все в основном пытаются модифицировать регрессию.
Вот я о чем говорю. Более 90% - долбаебы, в любом непонятном случае использующие регрессию и главные компоненты. Как будто не было десятилетий развития в этом направлении и нет никаких алгоритмов кроме главных компонент и придуманных за последние 2 года хгбустов. Мартышки невер чендж. Впрочем, на пистоне наверное и действительно нет ничего кроме вышеназванного. А все ж веруют, что кроме пистона все остальное на свалке истории.
Аноним 05/04/16 Втр 15:38:49 #306 №708500 
>>708462
Ну так давай, наверни алгоритмов и забери четыре тысячи, что же ты? А, да, ты же в пистон не смог.
Аноним 05/04/16 Втр 16:01:38 #307 №708523 
>>708500
слишокм просто, лучше пойду стартап доделывать
Аноним 05/04/16 Втр 16:02:07 #308 №708525 
>>708222

Откуда мне знать, это не моя проблема.
Аноним 05/04/16 Втр 16:02:31 #309 №708527 
>>708081

Тем что их решают в одиночку
Аноним 05/04/16 Втр 16:17:56 #310 №708534 
>>708527
по твоему ансамбль хуёвых аналитиков лучше чем один хороший специалист ?
Можешь больше не отвечать, все поняли что ты хуй простой.
Аноним 05/04/16 Втр 16:31:41 #311 №708545 
Байес вот этот ваш тоже. Который, к слову, не Байес, а Бейес. Давно показано, что то, что называется "формулой Байеса", как и вообще вся вероятность, тривиально сводится к множествам. Больше того, давно существует обобщенная нечеткая теорема Байеса. И что, где-то и кем-то все это используется? Или кто-то хотя бы знает об этом? Хуй там плавал.
Аноним 05/04/16 Втр 17:24:27 #312 №708594 
>>708523
в добрый путь! а мы пока поколупаем линейную регрессию))
Аноним 05/04/16 Втр 21:46:42 #313 №708824 
>>707536
> всем нужен опыт и чуть ли не пхд
Лол, вот у нас ребята и сидят в аспирантуре со своим мл. При этом имеют оклад, позволяющий жить, занимаются там любимым делом.
Аноним 06/04/16 Срд 01:42:51 #314 №709002 
>>708534

Матерок при входе надо оставлять. ну и реальный опыт тоже неплохо бы нарабатывать - на дваче его не получишь
Аноним 06/04/16 Срд 06:04:24 #315 №709036 
Охуеть, ребята, помогите советом идиоту!
Пишу диплом на пайтоне, нужно определять тональность текста на русском языке (бинарная классификация).
Какой классификатор лучше взять? Везде рекомендуют нативный байес.
Есть ли смысл пердолить всякие стемминги, лемматизации и прочее? Есть ли готовый код, определяющий часть речи каждого слова в предложении? Я, блядь, смотрю на эту хуйню и охуеваю, глаза разбегаются. Что реально даст эффект - я так и не понял.
Какую минимальную точность дадут базы для обучения в 110к отрицательных и 110к положительных отзывов с твиттера? Ну, примерно можете почувствовать?
Просто сроки жмут, и времени ковырять это добро в свое удовольствие нет к сожалению + я мало кодил на своем веку лучшее, что писал - визуалочка для БД на sql, трудности с пайтоном (в основном, благодаря срокам).
Алсо, адепты пайтона, подскажите, в чем можно без проблем собрать визуалочку под моё дерьмо? Надеюсь, я его-таки высру
Аноним 06/04/16 Срд 06:18:29 #316 №709038 
>>709036
Ты главное больше спойлеров пиши - так тебя точно все прочитают.
Аноним 06/04/16 Срд 06:20:47 #317 №709039 
>>709038
Пардон, мсье, не знал, что здесь это моветон. А по вопросам есть мнение?
Аноним 06/04/16 Срд 07:51:10 #318 №709066 
>>709039
Мое мнение такое, что диплом - это лучшее, что у тебя будет, чтобы поковыряться в R&D так как ты хочешь в ближайшие лет пять, поэтому отмазы по поводу отсутствия времени смешно слышать. Наверное, ты охуенно много работаешь и зарабатываешь много, да?
Короче, пиздуешь на фриланс.ру и за 1000 рублей даешь задание спарсить яндекс.маркет отзывы с оценками. Затем берешь pymorphy и переводить все слова леммы (ну или говоришь это тому же кто спарсит за 500 рублей сверху).
Получаешь табличку "оценка: куча слов". Далее берешь RedisBayes http://stackoverflow.com/questions/558219/bayesian-spam-filtering-library-for-python и смотришь на перформанс. Если нормальный - забиваешь, если плохой - берешь что помощнее, в этом сезоне моден xgboost.
Аноним 06/04/16 Срд 08:06:32 #319 №709071 
>>709066
Спасибо, посмотрю. Яндекс парсить смысла нет, есть готовая база с оценками, с твиттера. Только что ты такой злой, я ж нормально спросил?
Аноним 06/04/16 Срд 08:14:08 #320 №709076 
>>709071
Я не верю в базы из твиттера, потому что они собираются, как правило, с помощью тех же самых слов-маркеров, а значит смещены уже изначально. Но с базой тут работы на вечер - подключить pymorphy и поиграться с классификаторами.
Аноним 06/04/16 Срд 08:23:54 #321 №709082 
>>709076
Твоя правда, но, базу, вроде бы, руками кто-то шерстил после сбора. Буду надеятся.
Поясни, пожалуйста ещё по байесам, методу опорных векторов, и т.д. Принципиальная разница в моем случае есть?
Аноним 06/04/16 Срд 08:41:39 #322 №709089 
>>709082
В интернете полно cheat sheet'ов типа http://dlib.net/ml_guide.svg , но в них особого смысла нет, потому что хороших методов не так много, и самые популярные можно просто перебрать.

Принципиальная разница в том, что байесу ты можешь просто скормить все твои слова в виде 2-х множеств, good и bad, а SVM требует векторы фиксированной длины на входе, то есть нужны дополнительные телодвижения. То есть байес - самый простой, а если он самый простой и заработает, зачем усложнять.

А так делишь базу на 2 части, тренируешь классификатор на первой (training set), проверяешь на второй (validation set), смотришь на перформанс в обоих случаях, если одинаковый и хороший, прекращаешь поиски (если, конечно, тебе не платят по часам - тогда ищи сколько влезет), если плохой даже training, меняй классификатор, если training хороший, а validation плохой - увеличивай размер базы (не обязательно физически парся больше текста, хотя это лучше всего, можно и искусственно что-либо придумать), а если все равно плохой - меняй классификатор. Как-то так.
Аноним 06/04/16 Срд 08:46:30 #323 №709094 
>>709089
Спасибо анон, добра тебе!
Аноним 06/04/16 Срд 23:50:41 #324 №709755 
>>700282
А еще ReLU усиливает разреженность. Цель же - уйти от линейности, анон все правильно пояснил.
>>700355
>то ясень красень поведение функции предсказать не получитс
Предсказать вполне себе получится, если функции активации с ограниченной областью значений (сигмоида, например).
>>703785
Куча толковых курсов с годными преподавателями, программа не оторвана от реальности и математика переплетается с практическими задачами. ВШЭ - так себе. Сейчас вроде бы ФКН неплохо раскачивается, но когда я там учился (тогда это называлось ПМИ), было все плохо для тех, кто не умел сам вкалывать. Для сдачи на 4 (из 10 баллов, 4 - минимальный проходной) не нужно было знать практически нихуя.
>>707245
> А на настоящей работе тебе нужно будет создать этот самый датасет, после чего внедрить свое МЛ-решение.
В яблочко.
Ситуация, когда у тебя есть готовая табличка размера NxM и тебе нужно что-то там обучить - вообще редкость. Пример рабочей же ситуации такой - половина данных приходит в реалтайме, тебе их нужно по корзинам складывать, другую половину тебе нужно собирать в кучки и считать какие-нибудь статистики, потом из каких-нибудь далеких таблиц на ходу засасывать третью половину фичей, четвертую половину с разогретых счетчиков снимать. На написание этого уйдет 50% времени. С этим мясом ты пытаешься предсказать какую-нибудь йобу в реалтайме. Каждый божий день переобучиваешь модель или дообучиваешь ее, если она онлайновая, ретроспективно применяешь и все заново пересчитываешь.
Обучение модельки занимает 1-2% времени. Остальное же время уходит на эксперименты, обсуждение и генерацию идей.
А еще есть сорт задач (правда не все компании могут позволить себе их решать), которые требуют написания кастомных алгоритмов обучения под ситуацию.
Так что кегли - это так себе показатель.
>>707431
Можно вроде + есть заочное обучение.
ОП-проебщик
Аноним 07/04/16 Чтв 01:23:15 #325 №709797 
>>709755
Ты интересуешься применением ML в сильном ИИ или тебе это все надо только по работе?
Аноним 07/04/16 Чтв 01:42:37 #326 №709805 
>>709797
С трудом представляю себе ситуацию, когда ИИ и машобом занимаются не по интересу, а "по работе". Для достижения значимых результатов нужно заниматься, кодить и самообучаться постоянно, а не в течении 8 часов рабочего дня. В отсутствии интереса такое, имхо, невозможно.
Моя работа переплетена с моими жизненными смыслами, в этом плане мне сильно повезло.
Аноним 07/04/16 Чтв 01:45:35 #327 №709808 
>>707210
Ну, вот допустим, я с 2 курса ходил в ШАД, окончил и норм должно быть или нет?
Аноним 07/04/16 Чтв 02:53:30 #328 №709826 
>>709805
Считаешь ли ты, что имеющихся на данный момент знаний по машобу достаточно для создания ИИ уровня человека? Или предстоит разработать что-то еще?

Я вот думаю, что написать ИИ человеческого уровня это колоссальная работа вроде написания ОС на каком-нибудь новом ядре. И аналогия с ОС мне очень нравится, т.к. для сильного ИИ потребуется соединить в одно множество подходов, реализовать Hybrid intelligent system и все такое.
Аноним 07/04/16 Чтв 12:05:34 #329 №710011 
срач байес vs MLE го
Аноним 07/04/16 Чтв 13:13:49 #330 №710072 
14600240293140.jpg
>>709826
да ещё пару лет и напишут
Аноним 07/04/16 Чтв 14:40:58 #331 №710144 
>>709826
Для создания сильного ИИ достаточно теорий нечетких множеств и теории категорий.
Аноним 07/04/16 Чтв 17:18:36 #332 №710241 
>>710144
Толсто.
Аноним 07/04/16 Чтв 17:49:10 #333 №710264 
>>710241
Это один из шизофреников из /сци. Они там годами мусолили тему школоии. Лучше не разговаривай с ним, а то он зафлудит тред шизофазией.
Аноним 07/04/16 Чтв 18:23:18 #334 №710289 
>>710264
Почему сразу шизофреники, школо и шизофазия? Хотелось бы полистать архивы тех тредов, интересно, что народ думает по ии.
Аноним 07/04/16 Чтв 19:57:11 #335 №710375 
>>710289
Потому что это так. Это не "народ", а 2.5 абсолютно не разбирающихся в теме человека. Не знаю насчет архивов, просто пойди в /сци и создай "Оффициальный ИИ-тред", они тебе еще нагенерят.
Аноним 07/04/16 Чтв 19:59:17 #336 №710379 
>>710241
>>710289
Ничего толстого.
1) любые взаимодействия в любой системе сводятся к функциям в т.ч. многих аргументов.
2) любая динамическая система представима в виде NARMAX-модели, считай матрицы Ганкеля.
3) любая функция многих переменных представима в виде суперпозиций своих частных функций от двух аргументов, что для непрерывных функций доказали еще Колмогоров с Арнольдом, а Горбань обобщил на любые функции.
4) универсальные аппроксимирующие свойства нечетких моделей доказаны Коско, им же предложен вариант стндартной аддитивной модели (SAM), к которой тривиально сводятся все классы нечетких моделей.
5) формализмы теории категорий дают возможность задавать любую структуру из отдельных нечетких моделей, в т.ч. сколько угодно гибридную, адаптивную и т.д.
Аноним 07/04/16 Чтв 21:24:57 #337 №710469 
>>710379
Толсто потому что когда говорят об сильном ИИ, имеют в виду непонятно что. Термин интеллект на самом деле плохо определён.
Аноним 07/04/16 Чтв 22:29:28 #338 №710532 
>>709826
>Считаешь ли ты, что имеющихся на данный момент знаний по машобу достаточно для создания ИИ уровня человека
Мне не очень нравится такая постановка вопроса. По машобу знаний у людей достаточно, а вот понимания сути ИИ уровня человека - нет. Да, есть недостаток мощностей, который уйдет с приходом новых архитектур, но это не главное препятствие.
>>710144
>>710379
Очень интересно, но все эти теории и алгебры несколько оторваны от реальности, имхо. Те, кто создают промышленный ИИ, обычно имеют дело с более приземленными вещами и мне неизвестны работающие и широко используемые системы, написанные на таком уровне абстракции.
Аноним 08/04/16 Птн 00:52:17 #339 №710631 
>>708222

Прямо чувствуется обида дурачка, которые сидит на диване и не понимает, как же ему устроится на хорошую работу млинжиниром.

мимо-за-последние-месяцы-отсобеседовал-два-десятка-ML-engineer-ов
Аноним 08/04/16 Птн 01:13:48 #340 №710643 
>>710631
Опиши идеального кандидата, няша. Вот чтобы прям обоссаться и нанять во время интервью.
Аноним 08/04/16 Птн 01:23:26 #341 №710647 
>>710643
btw, реально ли устроится в такую компанию за еду300$ и учиться этой ML там? Я в итоге все равно планирую этим заниматься, но текущий план предусматривает год изучения ML и параллельной работы на галерах. Реально это ускорить?
Аноним 08/04/16 Птн 01:30:12 #342 №710652 
>>710643

Недавно упустили такого.
У чувака было почти 10 лет в академии, 7 лет в индустрии (в трёх конторах, чем только не занимался). Может объяснить любой применяемый алгоритм, не изолирован в своей работе ни в теоретическом плане, ни в плане кодирования (хотя конечно от них никто не ждёт умения деплоить) - я думаю из всех проблем мл-макак эти две всплывают чаще всего (если отсекать тех кто просто пиздит и не знает вообще ничего, обычно из-за отсутствия реального опыта).

мы ему сделали оффер, но мелкософт купил его контору (Swiftkey), ему предложили более жирный контракт и он остался

алсо, за одно интервью решение не принимается
Аноним 08/04/16 Птн 01:34:28 #343 №710656 
>>710652
Короче напиши мне список тем/вопросов/направлений, на которые я могу ориентироваться в будущем. Вот я сяду завтра учить это все, а через полгода-год прийду в вашу контору, покажу свой ML-проект, отвечу на вопросы и меня в итоге возьмут.
Можешь такое написать?
Аноним 08/04/16 Птн 01:34:35 #344 №710657 
>>710647

Я не знаю что там в ML "изучать" целый год (почему не месяц? почему не пять лет?) А изучение в отрыве от реальности обычно тяжкое (менее эффективное и сложнее продаваемое потом в качестве навыка). Попробуй лучше запилить свой публичный проект по интересной теме. Иногда в сиви люди всерьёз пишут "Прошёл три курса на Coursera" - с такими общаться грустно, как показывает практика.

- Как вы решите задачу X?
- Ну, наверное возьму Y, или Z, вообще там много разных алгоритмов!
- А как будете масштабироваться?
- Возьму решение для масштабирования!
- А как это повлияет на применимость Y по сравнению с Z?
- ... ну я обычно прототипы писал ...
Аноним 08/04/16 Птн 01:44:44 #345 №710660 
>>710657
>Я не знаю что там в ML "изучать" целый год (почему не месяц? почему не пять лет?)
Цифра от балды, на самом деле. Мне не известны ни объем, ни сложность материала. На данный момент мне просто хочется заниматься искусственным интеллектом.

В какие сроки можно устроиться в контору занимающуюся ML, начиная с нуля? Зарплата особо не важна, лишь бы покрывала затраты на существование.

Аноним 08/04/16 Птн 02:01:37 #346 №710664 
>>710656

На своей последней работе, сколько вы занимались теорией, а сколько писали код для продакшена? Какое соотношение предпочтительнее?

Опишите, какие алгоритмы вы применяли в своём проекте X, Y и Z.

У вас есть сайт с видео. Постройте рекомендательную систему, чтобы предлагать посетителям видео, которые им могут быть интересны, после того как они посмотрят что-нибудь. Какие вам для этого нужны входные данные? Какие плюсы/минусы/альтернативы у подхода? Какой технологический стек возьмёте? Как изменится система, если нужно рекомендовать статьи, а не видео?

У вас есть список из N новостей из интернета (стянутых с новостных сайтов, соцсетей и т.д.). Выстройте их в соответствии с предполагаемой способностью привлечь читателей. (остальные вопросы считай те же)

Как бы вы построили систему для определения горячих тем в новостях/социальных медиа? (остальные вопросы те же)

Пользуясь любыми технологиями, библиотеками и справочными материалами, за 1 час постройте систему классификации для базы рукописных образов MNIST, оцените качество решения, предложите, как его улучшить. кандидат приносит свой ноутбук, вайфай есть

Экспериментируя с ГПСЧ, которые выдаёт числа от 1 до 100, мы получаем последовательность 16, 8, 32, 2. Что вероятнее: генератор выдаёт чётные числа, либо генератор выдаёт степени двойки?

Домашка на неделю - простенькая поисковая система (набор данных - 20 новостных групп, запросы: 1) бинарные с "и/или" в произвольных комбинациях; 2) N лучших результатов для слова по tf-idf). Минимум библиотек (построение предполагается выполнить с нуля). Оценка на основе: структур данных и алгоритмов, документации и структуры кода, умения объяснить применяемые техники, умения применить функциональный подход. Опубликуйте на гитхабе.
(На сложный стемминг и нормализацию обычно не смотрим её обычно и не делают, обсуждение ведём скорее в сторону масштабирования индекса.)
Аноним 08/04/16 Птн 02:02:41 #347 №710665 
>>710660

> В какие сроки можно устроиться в контору занимающуюся ML, начиная с нуля?

Я думаю, это сильно зависит от доступного тебе рынка рабочих мест.
Аноним 08/04/16 Птн 02:05:57 #348 №710667 
>>710664
И какую з\п будет получать принятый кандидат, если пройдет все это?
Аноним 08/04/16 Птн 02:06:21 #349 №710668 
>>710660

Ещё я вечно проигрываю с "искусственного интеллекта" и вообще 90% хайпа о "машинном обучении", но это скорее потому что нейронки в продакшене не юзал.
Аноним 08/04/16 Птн 02:07:35 #350 №710669 
>>710667

Ну эта вакансия объявлена с ценником до £80k, хотя за всё время был только один персонаж, реально тянувший на такие деньги. А так от £60k я думаю, если учитывать наш уровень требований.
Аноним 08/04/16 Птн 02:08:13 #351 №710671 
>>710667

Тут реально вопросов на пару недель почитать пейперы/либы. Технические вопросы - да, там нужен просто тупо инженерный опыт.
Аноним 08/04/16 Птн 02:08:39 #352 №710672 
>>710665
Если обсуждать знания, стоящие до 1500$, то на рынке работы в РФ
Если выше, то в любой стране. Английский у меня есть, с переездом компания поможет.
Аноним 08/04/16 Птн 02:12:58 #353 №710674 
>>710672
Я имею в виду, что если уровень подготовки высокий, то я могу успешно откликаться на вакансии по всему миру, ведь компании в таком случае не будут скупиться на оплату переезда и визы.
А если учитывать некий минимальный набор, который позволит устроиться за еду, то, очевидно, речь идет про РФ.
Аноним 08/04/16 Птн 02:13:34 #354 №710675 
>>710669
>£60
Это овер 450к дерева в месяц за то, чтобы подсовывать юзерам новости и видяшки? Почему так дохуя?
Аноним 08/04/16 Птн 02:19:09 #355 №710680 
>>710675
Наверное, потому что уже 2 месяца найти не могут, лол.
Аноним 08/04/16 Птн 02:22:41 #356 №710683 
>>710680
Ну на начало 2015 это былобы по курсу 200к дерева, так что я не учел этот момент и 200к это еще норм.
Аноним 08/04/16 Птн 02:29:35 #357 №710686 
>>710675
Айтишникам везде хорошо, а тут и область хайпнутая, и не перекачаная хорошими кадрами - я же писал выше
Аноним 08/04/16 Птн 02:33:33 #358 №710689 
>>710680

Ну кстати да
Аноним 08/04/16 Птн 02:36:49 #359 №710690 
>>710675
Овер 350к, в ГБ налоги треть. Зарплаты до налогов указывать принято.
Аноним 08/04/16 Птн 02:47:05 #360 №710692 
Есть ли смысл перекатываться с джавы (знаю на уровне javarush 15 lvl) на питон, если планирую плотно заняться ML да и вообще алгоритмами, работающими с BigData? Изучая ml и ИНС постоянно натыкаюсь на php, вот думаю - может перекатиться, пока не поздно? Да и синтаксис больше нравится.
PS Работодателю все равно, какой язык буду использовать.
Аноним 08/04/16 Птн 03:17:27 #361 №710703 
>>710675
Потому что за меньшее никто в эту дорогую помойку не поедет.
Аноним 08/04/16 Птн 03:18:10 #362 №710704 
>>710692
>php
на py конечно же
Аноним 08/04/16 Птн 03:44:08 #363 №710705 DELETED
>>652472 (OP)
ВЫЧИСЛЯЙ ИЛИ ГРОБАНЕШЬСЯ ОТ СТАРОСТИ
Аноним 08/04/16 Птн 03:50:45 #364 №710706 DELETED
>>710705
>
Аноним 08/04/16 Птн 10:43:56 #365 №710854 
>>710692

Забыл сказать, всё что меньше петабайта - это не BigData.
Хватит говорить баззвордами.

>>710703

Зачем нужен Лондон, когда есть родной уютный диван?
Аноним 08/04/16 Птн 12:14:12 #366 №710918 
>>710664
>Пользуясь любыми технологиями, библиотеками и справочными материалами, за 1 час постройте систему классификации для базы рукописных образов MNIST, оцените качество решения, предложите, как его улучшить.
А если я просто скачаю с гитхаба одну из сотни готовых решений для мниста, мне перезвонят?
Аноним 08/04/16 Птн 12:21:17 #367 №710923 
>>710918

Я не вижу в этом проблем, суть задания не в этом. Хотя так никто не делал.
Аноним 08/04/16 Птн 13:04:34 #368 №710967 
>>707060
> для работы пхд требуется

Скорее только мешает
Аноним 08/04/16 Птн 13:22:34 #369 №710984 
>>710664
> Экспериментируя с ГПСЧ, которые выдаёт числа от 1 до 100, мы получаем последовательность 16, 8, 32, 2. Что вероятнее: генератор выдаёт чётные числа, либо генератор выдаёт степени двойки?
Я ньюфаг, поясните за это. Мне почему-то кажется, что недостаточно данных, чтобы оценить вероятность.

Пусть A - событие "получили последовательность 16, 8, 32, 2". По теореме Байеса получаем
P(even | A) = P(even)P(A | even) / P(A)
и
P(pow2 | A) = P(pow2)P(A | pow2) / P(A).
Получается, надо сравнить P(even)P(A | even) и P(pow2)P(A | pow2). Не зная P(even) и P(pow2) без учета того, что мы получили A, мы не можем их сравнить. То есть можно разные P(pow2) и P(even) брать и будет получаться разный ответ.
Аноним 08/04/16 Птн 13:31:52 #370 №710993 
>>652472 (OP)
> А потом мне пришлось дописывать компилятор Python.
Поясни за это. Я думал, если нужно быстро запилить прототип, то пишут на питоне, а если нужно что-то серьезное, то, что будет быстро работать, пишут на плюсах. Зачем тебе понадобилось дописывать компилятор питона?
Аноним 08/04/16 Птн 13:51:19 #371 №711012 
Является ли работа в энтерпрайзе пустой тратой времени? Или любой опыт разработчика является плюсом при устройстве на работу? Через пару месяцев заканчиваю бакалавриат, но мне еще далеко до того уровня, когда могут взять на работу в data science. Что лучше: работать в энтерпрайзе или подобной параше и после работы задрачивать ds или не работать и целыми днями задрачивать?
Аноним 08/04/16 Птн 13:59:55 #372 №711015 
>>711012
В датасаенс потом все равно джуном пойдешь. Если будет опыт дженерик кодинга, это будет плюсом: хоть понятно, что кодить умеешь.
Аноним 08/04/16 Птн 14:04:18 #373 №711017 
>>710993

> то пишут на питоне, а если нужно что-то серьезное, то, что будет быстро работать, пишут на плюсах.

На чём основан такой вывод? Питон же используется как клей к быстрым либам.
Аноним 08/04/16 Птн 14:04:56 #374 №711018 
>>710984
Гугли тему model selection, это простейший его пример. Тут нужно посчитать вероятности генерации этой последовательности двумя генераторами. Считать не обязательно, ответ очевиден, но нужно его правильно обосновать.
Аноним 08/04/16 Птн 14:51:29 #375 №711046 
>>711018

> Тут нужно посчитать вероятности генерации этой последовательности двумя генераторами

Да, это правильный подход.
Аноним 08/04/16 Птн 14:54:01 #376 №711047 
>>711018
Чет ниче не понял про model selection.

> Тут нужно посчитать вероятности генерации этой последовательности двумя генераторами
Если так, то вероятность генерации генератором, который генерит степени двойки, больше. Ну и че с того?
Аноним 08/04/16 Птн 15:27:48 #377 №711069 
>>711047
Ну и все, это и есть ответ на вопрос. Если тебе по Байесу надо разложить, то в твом анализе P(even) = P(pow2) = 0.5, априорная вероятность каждого из генераторов.
Аноним 08/04/16 Птн 15:35:35 #378 №711073 
>>710532
>все эти теории и алгебры несколько оторваны от реальности, имхо.
Все перечисленное либо уже давно реализовано на канплюхтере, либо элементарно реализуется. Но вот именно гибридные распределенные структуры на этих принципах никто никогда не делал, во всяком случае в открытом доступе на эту тему нет ничего.
Аноним 08/04/16 Птн 22:22:22 #379 №711384 
>>711069
> P(even) = P(pow2) = 0.5, априорная вероятность каждого из генераторов
На чем вообще основано это предположение? Это вообще никак не следует из условия.
Аноним 09/04/16 Суб 00:35:49 #380 №711485 
>>711384
Метод максимального правдоподобия?
Аноним 09/04/16 Суб 18:33:52 #381 №712107 
>>711485
поясните за метод для тупых
Аноним 09/04/16 Суб 19:22:25 #382 №712143 
>>711073
Хорошо, мне не очень хочется спорить об этом. Когда я говорил о ненужности теории категорий, я имел ввиду факт того, что ее языком и абстракциями напрямую в ML не пользуются и она не на тех проблемах акцент делает. Никто не хочет умалить ее ценности, но все должно быть на своих местах.
>>710993
>Я думал, если нужно быстро запилить прототип, то пишут на питоне, а если нужно что-то серьезное, то, что будет быстро работать, пишут на плюсах.
Это в идеальном мире, причем лишь в таких компаниях, где IT может управляться централизованно. Там, где мы занимались компилятором Python, создание продуктов и технологий напоминает скорее федерацию хаотических процессов и в проде может оказаться даже Аллах что угодно. Ну и во-вторых - Python зачастую используется в инфраструктуре и съедает нехило процессорного времени даже за вычетом числодробильных задач.
>>711012
Работал я как-то в энтерпрайзе, не рекомендую. Если есть возможность целыми днями задрачивать и не работать - идеально. Но более реальный вариант - устроиться младшими разработчиком куда-нибудь в ламповое место за небольшую з/п и набивать руку.
Аноним 09/04/16 Суб 20:29:08 #383 №712190 
>>712143
>задрачивать и не работать - идеально

Ах тыж хитрый уебак, даешь вредные советы желторотикам, чтобы конкуренции не было?
Аноним 09/04/16 Суб 20:47:37 #384 №712196 
>>712190
Не выдумывай. Просто если нет необходимости зарабатывать, то лучше посвятить себя учебе.
sageАноним 09/04/16 Суб 21:01:31 #385 №712201 
>>712196
До курса 4-го - да. Потом строго наоборот.

Чувак, вопрошавший у тебя, явно близок к выпуску, а это значит, что если он сейчас бросит работу, то скорее всего будет саморазвиваться смотря аниме-тайлы, пока не прожрет все деньги.

Так что, по мне, дрянной ты ему совет даешь.
Аноним 09/04/16 Суб 21:09:52 #386 №712204 
>>712201
>что если он сейчас бросит работу, то скорее всего будет саморазвиваться смотря аниме-тайлы, пока не прожрет все деньги.
Какие-то крайности. Человек уже взрослый, наверное сам способен разобраться сможет ли он заниматься учебой, находясь дома или нет.
А во-вторых - перечитай внимательно вопрос. Он был про "энтерпрайз-парашу", под которой я понимаю работу со вполне определенными задачами и стэком технологий. Ценность такого опыта очень низкая, если он потом собирается перекатиться в другую область.
Аноним 09/04/16 Суб 21:41:15 #387 №712217 
Аспирант по МТРО (Мат теория распознавания образов) врывается в тхреад. Задавайте любые вопросы по МО, попытаюсь ответить.
Аноним 09/04/16 Суб 22:18:31 #388 №712237 
14602295117680.jpg
И кстати, велкам ту зе рашка.

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1977F7873CB8D517CF52FE6FF75A9D83?doi=10.1.1.108.6653&rep=rep1&type=pdf

У нас какая-то спецолимпиада - написание статей без приведения ссылок на исходники? Воронцов написал о своём принципиально новом ⓒⓡ алгоритме и о результатах на датасетах. При этом у этого алгоритма туча гиперпараметров о которых он нигде не упомянул. Т.е результаты есть, а исходников или хотяб гиперпараметров конкретных он не дал.

Угробил пару дней на реализацию его а оно не даёт такие крутые результаты, как и ожидалось, лол.
Аноним 09/04/16 Суб 23:02:54 #389 №712263 
>>712237
Да, да, а на швитом западе все так и рады поделиться интеллектуальной собственностью. Верь в это.
Аноним 09/04/16 Суб 23:07:00 #390 №712264 
>>712263
Ну раз уж написал статейку с обьяснением своего алгоритма и о том какой он крутой - пиши и какие гиперпараметры были для получения твоих результатов. А так ощущение будто он эти цифры от руки накидал.
Аноним 09/04/16 Суб 23:29:02 #391 №712286 
>>712264
Так и принято в научном мире, когда статья есть, а воспользоваться результатами без того, чтобы отвалить бабла исследователю, невозможно.
Аноним 10/04/16 Вск 01:01:19 #392 №712354 
>>712107
Задаются неинформативные приоры и максимизируется правдоподобие данных без учёта приоров?
другой нуб
Аноним 10/04/16 Вск 01:04:59 #393 №712359 
>>712237
Эволюционные методы - вообще проклятая тема с постоянной подтасовкой результатов в виде публикации оверфиттинга. Реальность в том, что эволюционные алгоритмы плохо работают, и улучшить простейшие базовые результаты очень трудно. Вот народ и приспособился: нафигачат пятьдесят гиперпараметров, подберут их к задаче, вуаля - готовая статья. Этот ещё и замаскировался. Но все это прекрасно понимают и импакт этих "исследований" околонулевой.
Аноним 10/04/16 Вск 01:05:50 #394 №712360 
>>712217
Как встроить максимизацию взаимной информации в модель скрытых MRF?
Аноним 10/04/16 Вск 01:07:51 #395 №712364 
>>712359
Двачую этого.

>>712286
Порой нужно просто отчитаться за грант или финансирование, поэтому публикуется нечто, что трудно проверить и может в теории представлять ценность.
Аноним 10/04/16 Вск 02:18:32 #396 №712404 DELETED
>>652472 (OP)
Народ, помогите кому не в падлу https://2ch.hk/pr/res/712401.html
Аноним 10/04/16 Вск 11:04:41 #397 №712547 
Дайте ссылочку на категорию в arxiv.org со статьями про machine learning, я вроде не новичёк, но так и не осилил категорию там найти, не понял интерфейс Да, я тупой
Аноним 10/04/16 Вск 14:26:55 #398 №712707 
>>712547
http://arxiv.org/list/stat.ML/recent

В твиторе есть пачка крутых аккаунтов от arxiv.org, подписавшись на которые можно смотреть новые публикации из твитора.
https://twitter.com/StatMLPapers
Аноним 10/04/16 Вск 14:34:35 #399 №712717 
14602880759870.jpg
>>712707
Благодарю. Тут ещё говорили о каком-то блоге с обзорами годных статей. Просто хотелось бы фильтровать поток инфы, чтоб только относительно годное читать, времени маловато.
Аноним 10/04/16 Вск 14:39:16 #400 №712724 
>>712717
> 5. https://vk.com/deeplearning
ОП-пост няша, всё в оп-посте.
Аноним 10/04/16 Вск 21:22:46 #401 №713344 
Меня тут приглашали в аспирантуру, продолжать исследования по ML и курсы читать/вести практику в федеральном вузе местного мухосранска. Могу совмещать это с работой, но какие профиты? ML я и так не плохо знаю, ну теоретическую часть и немного практики, но какие профиты можно из аспирантуры извлечь?
Аноним 10/04/16 Вск 22:16:24 #402 №713413 
>>713344
Статьи, финансирование и т.д.
Аноним 11/04/16 Пнд 00:35:19 #403 №713477 
>>713344
Да и преподавание само по себе – тоже довольно интересный процесс.
Аноним 12/04/16 Втр 21:38:44 #404 №714920 
bump
Аноним 13/04/16 Срд 02:13:42 #405 №715232 
Я знаю, что большинство кодит ML, используя Python или R. Но передо мной сейчас стоит задача, где скорость достаточно критична, а достататочно мощной машинки нет.
Собираюсь писать всё крестах.
Кто какие крестовые библитоки ML испольует?
Аноним 13/04/16 Срд 16:26:11 #406 №715618 
Есть циферки с сенсоров через фильтр, задача в том, чтобы привязать эти циферки к ML-алгоритму так, чтобы и-агент с поощрениями-подкреплениями адаптировался к оптимальному выполнению задачи, а не просто рандомно подбирал варианты функций методом тыка. Что читать ньюфагу?
Аноним 13/04/16 Срд 16:48:34 #407 №715647 
>>715618
reinforcement learning
Аноним 13/04/16 Срд 17:25:50 #408 №715689 
>>715647
Спасибо, а, может, есть по сабжу какие-нибудь годные ресурсы с примерами реализации, легкоусваемой инфой и все такое?
Аноним 13/04/16 Срд 17:33:17 #409 №715706 
>>715232
TensorFlow
Аноним 13/04/16 Срд 17:34:55 #410 №715708 
>>715689
http://lmgtfy.com/?q=reinforcement+learning+for+idiots
Аноним 13/04/16 Срд 17:45:29 #411 №715722 
>>715689
Лично я не ковырял.
Аноним 13/04/16 Срд 18:06:45 #412 №715750 
>>715232
>Кто какие крестовые библитоки ML испольует?
MXNet на крестах, https://github.com/dmlc/mxnet от создателя xgboost. Есть врапперы для всего подряд, от пистона до Go.
Аноним 13/04/16 Срд 20:26:54 #413 №715964 
>>715232
Ты сначала прототип напиши и удостоверься что вообще всё работает как тебе надо, а потом уже думай над поиском более быстрых альтернатив.
Аноним 16/04/16 Суб 23:18:30 #414 №718801 
Двач, с какой стороны вкатываться в NLP?
Аноним 17/04/16 Вск 01:02:55 #415 №718877 
>>718801
С правой.
Аноним 17/04/16 Вск 16:08:16 #416 №719250 
>>718801
Хуй знает. Поэтому держи:
http://shop.oreilly.com/product/9780596516499.do
Аноним 18/04/16 Пнд 20:26:46 #417 №720382 
Анон, смотри, есть три таблицы связанные 2 внешними ключами (Продукты и их характеристики; Пользователи и их характеристики; Оценки которые пользователи поставили продуктам).
Хочу забить это все в нейросеть, для начала в какой-нибудь SPSS/Statistica/Deductor, а потом готовую модель во что-то более прикладное размещения на вебе, может быть FANN, не знаю (посоветуйте кстати).
Вопрос - какой пакет поддерживает применение в качестве исходных данных нескольких таблиц? Т.к. сводить 3 таблицы в одну (оценки с характеристиками пользователя и продукта) приведет к росту БД на порядки.
Аноним 18/04/16 Пнд 21:31:38 #418 №720459 
>>720382
Задачу поставь нормально. Что хочешь получить на основе каких данных?
Аноним 18/04/16 Пнд 23:21:12 #419 №720548 
>>720459
У меня задача скорее образовательная для себя. Я время от времени занимался дата майнингом для разных проектов, а нейронные сети открыл недавно, и хочу сопоставить одно с другим.

Есть 3 набора данных:
1. Продукт. Таблица с характеристиками продуктов (ну допустим вид, жиры, углеводы, белки, вкус, цвет)
2. Пользователи. Возраст, пол, город и т.п.
3. Оценки каким-то пользователем какого-то продукта (айдишники пользователя, айдишник продукта и оценка).
Хочу все это забить в нейронную сеть и получить возможность рекомендовать для нового пользователя указавшего свои характеристики и предпочтения по нескольким продуктам продукт который может ему понравиться.
Аноним 18/04/16 Пнд 23:57:32 #420 №720596 
>>720548
Тебя скорее интересуют ассоциативные правила, типичная задача анализа продуктовой корзины покупателей. И работать эту будет лучше твоей системы с оценками, потому что никто в здравом уме никакие оценки ставить не будет.

мимостудент
Аноним 19/04/16 Втр 00:12:48 #421 №720607 
>>720596
Да интересно не знал про такую штуку, попробую конечно, но все-таки основная задача это нейронная сеть, а оценки у меня уже есть и ставить их будут.
Продукты я привел в качестве примера более доступного.
Аноним 19/04/16 Втр 00:18:48 #422 №720622 
>>720607
> нейронная сеть
Много данных или просто интересно поиграться?
Аноним 19/04/16 Втр 00:24:35 #423 №720634 
>>720622
Да, там в первых двух базах по сотни тысяч, оценок дохуя наверно будет, под сотню миллионов наверно.
Аноним 19/04/16 Втр 09:04:44 #424 №720753 
http://www.nervanasys.com/demystifying-deep-reinforcement-learning/
Аноним 19/04/16 Втр 17:02:00 #425 №721071 
14610745201970.jpg
Поясните все-таки за SVM, или посоветуйте что-нибудь понятное на тему. Ну это пиздец какой-то, обычно любой алгоритм понимаю хотя бы в общих чертах, а тут вообще никак не заходит. Какое-то натягивание совы на кернелы с последющим поиском седловой точки этой совы, пиздец каша. Помогите.
Аноним 20/04/16 Срд 00:42:15 #426 №721466 
>>721071
Либо нормально задавай вопросы, либо иди читать про метод множителей Лагранжа.
Аноним 20/04/16 Срд 15:23:15 #427 №721776 
>>721071
https://www.coursera.org/learn/machine-learning/home/welcome
7 неделя
Аноним 20/04/16 Срд 15:28:54 #428 №721785 
>>720548
выглядит, как задача коллаборатиной фильтрации.
Аноним 20/04/16 Срд 21:27:21 #429 №722092 
>>721785
Упрощенно да.
Но есть один нюанс.
Система такой фильтрации одноуровневая, т.е. учитывает только лайки других пользователей. А мне надо чтобы учитывались еще и особенности самого продукта и пользователей. И если пользователей еще можно отфильтровать разными вариантами, то как учесть характеристики самого продукта (которые понятно могут быть общими у разных и влиять на выбор, например любят можно любить сладкое, но не калорийное) мне непонятно.
Аноним 20/04/16 Срд 23:07:36 #430 №722174 
>>722092
так по признакам продуктов как раз же и строятся классификаторы. Более того - насколько я помню из лекций Ng'a, он еще и сам тебе эти признаки подберет.
Аноним 21/04/16 Чтв 00:44:50 #431 №722266 
>>720753
Классная статейка.
А есть Марковские процессы принятия решений высоких порядков?
Аноним 21/04/16 Чтв 07:21:06 #432 №722399 
>>652472 (OP)
>1. Introduction to Statistical Learning, Casella ( http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf )
Statistical learning == machine learning?
Аноним 21/04/16 Чтв 11:18:23 #433 №722473 
>>722174
Где почитать про этот алгоритм? Тот что я нашел строит только на основании лайков других и твоих.
Аноним 21/04/16 Чтв 11:29:03 #434 №722478 
>>722399
Да.
Аноним 21/04/16 Чтв 11:40:43 #435 №722481 
>>722473
Ему без разницы твои лайки или не твои, просто этот метод сжимает пространства оценок таким образом декомпозируется на вектора характеристик продуктов и вектора характеристик пользователей, скалярное произведение продукт x пользователь примерно равно оценке данной этим пользователем данного продукта. Если люди 2 человека оценивали многие продукты примерно одинаково - их вектора в уменьшенном пространстве тоже близки будут. Т.е найдя ближайший ты можешь рекомендовать.

Не помню как называется, погугли типа SVD based recommendation system (Или matrix factorization based).
Аноним 21/04/16 Чтв 15:01:25 #436 №722624 
>>721466
>иди читать про метод множителей Лагранжа.
Уже лучше. А что конкретно читать? Зорича достаточно? Просто в гугле много всего, так просто не соориентируешься.
Аноним 21/04/16 Чтв 19:52:55 #437 №722969 
Есть ли хороший материал\лекции по нейронным сетям? По мимо Воронцова.
Аноним 21/04/16 Чтв 23:11:48 #438 №723113 
>>722624
Наверное, нам в универе читали о нём. В SVM используется обобщение этого метода для оптимизации.
Аноним 21/04/16 Чтв 23:13:05 #439 №723114 
>>722969
Хайкин.
По Deep learning есть что-то типа методички:
http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
Аноним 21/04/16 Чтв 23:14:13 #440 №723116 
>>722969
Алсо, в ОП-посте же всё есть:
http://deeplearning.net/reading-list/
Аноним 21/04/16 Чтв 23:40:10 #441 №723139 
Это знак.
http://www.amazon.com/Python-Machine-Learning-Sebastian-Raschka/dp/1783555130/
>Себастьян Рашка
Аноним 22/04/16 Птн 00:52:48 #442 №723187 
>>723139
Не уверен, что хороший знак.
Аноним 22/04/16 Птн 03:46:54 #443 №723222 
14612860147300.webm
>>706863
> Жалею, что не пошел в ШАД
>Теперь же, одновременная работа и учеба требует сильного напряжения

Сколько тебе лет? Ну или скажи из старшего поколения учится кто в ШАД? Скажем в районе 30 лет?
28 лет, думаю пойти в ШАД
Аноним 22/04/16 Птн 03:53:20 #444 №723225 
14612864004890.png
>>708545
> не Байес, а Бейес.
Не Цукерберг, а Закэбэрг.
Не король Артур, а король Осэ.
Иди нахуй, короче.
Аноним 22/04/16 Птн 04:51:49 #445 №723231 
хуясе годный трендж какой затаился на зекаче
Аноним 23/04/16 Суб 02:29:57 #446 №724219 
>>722624
>>723113
Ахуеваю, от того насколько вы смутно представляете, что вообще происходит.
Аноним 23/04/16 Суб 13:30:30 #447 №724416 
>>724219
ML-слесари, сэр.
Аноним 23/04/16 Суб 14:28:20 #448 №724450 
>>724219
>Ахуеваю, от того насколько вы смутно представляете, что вообще происходит.
Ну так поясни, школоилитарий. Или проходи мимо, не задерживайся.
Аноним 23/04/16 Суб 16:44:52 #449 №724542 
>>723222
Да, учатся, и нельзя сказать, что они выглядят тупее.
мимо-оп
Аноним 24/04/16 Вск 12:02:23 #450 №725222 
14614885431210.png
Да мы на пике, пацаны. Все вкатываемся и делаем мульоны.
Аноним 24/04/16 Вск 12:05:34 #451 №725223 
14614887347730.png
>>725222
But then I
Аноним 24/04/16 Вск 20:56:50 #452 №725778 
14615206104460.png
>>725223
откуда графики?
Аноним 25/04/16 Пнд 01:11:29 #453 №726011 
14615358891780.png
>>725222
Ебучие азиаты уже дают посасать.
Аноним 25/04/16 Пнд 01:26:26 #454 №726024 
>>722481

Он тебя про гибридную систему (content-based + CF-based) спрашивает, а ты ему излагаешь чистую CF-based.
Аноним 26/04/16 Втр 19:40:58 #455 №727804 
>>722478
А не врешь?
>Since that time, inspired by the advent of machine learning and other
disciplines, statistical learning has emerged as a new subfield in statistics,
focused on supervised and unsupervised modeling and prediction.
Аноним 26/04/16 Втр 19:41:18 #456 №727806 
>>727804
Обосрался с разметкой чутка.
Аноним 26/04/16 Втр 19:42:15 #457 №727810 
>>652472 (OP)
Поясните за машинное обучение. Есть ли какой-нибудь туториал по нему, чтобы можно было его использовать в своих прикладных целях, если я не математик?
Чтобы всё чисто программистскими терминами разжёвывалось, используя библиотеку вроде https://spark.apache.org/docs/latest/mllib-guide.html
Аноним 26/04/16 Втр 19:52:07 #458 №727833 
>>727810
scikit-learn
Аноним 26/04/16 Втр 20:48:39 #459 №727891 
>>727810
Туториалов полно, но без понимания основ ты все равно будешь как шимпанзе перед компьютером, тыкать кнопку пока не загорится лампочка и не выпадет еда.
Аноним 27/04/16 Срд 18:23:59 #460 №728588 
>>727891
Ну вот мне основы и нужны, чтобы человеческим языком на примерах объясняли какие баззворды для чего используются, и что нужно взять для шахматного AI, разгадки капчей, чат-бота, классификации спама, поисковой выдачи и т.п.
Аноним 27/04/16 Срд 19:22:43 #461 №728633 
>>728588
Машинка больше и сложнее, чем кажется. Это вообще-то довольно серьёздная математика на стыке статистики, оптимизации, функционального анализа и ещё много чего.

Если по делу, то смотри лекции Воронцова. Там он кое-где рассуждает о преимуществах и недостатках. Ещё есть user guide к sklearn. Будь готов к тому, что все выученные методы могут оказаться бесполезными в реальной жизни.
Аноним 28/04/16 Чтв 17:33:29 #462 №729621 
Пацаны!

Мне нужно в кратчайшие сроки решить задачу классификации на таких данных:

1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 8
1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 2
Все атрибуты бинарны.

Не вдаваясь в тонкости машинного обучения, какой посоветуете классификатор из коробки sklearn'а?
Аноним 28/04/16 Чтв 18:25:57 #463 №729683 
>>729621
from sklearn.ensemble import GradientBoostingClassifier с n_estimators от 9000 тысяч. Не благодари.
Аноним 28/04/16 Чтв 18:29:58 #464 №729690 
>>729683
Братуха, от души.

Если что, сток данных около 1000, а классов 10.
Аноним 28/04/16 Чтв 23:39:10 #465 №730116 
Вангую, что лет через пять в зекаче будет официальный тред по ML, где студенты будут объяснять друг друг лабы с лог.регрессией.
Аноним 29/04/16 Птн 09:31:10 #466 №730326 
>>729621
>>729683
>бинарные данные, 7 значений в строке
>классификация
>градиентный бустинг
Пиздец, цирк. Все как я и писал выше, кроме главных компонент, градиентного бустинга и ололо диплернинг вообще никаких идей.
Аноним 29/04/16 Птн 11:49:10 #467 №730418 
>>729621

RandomForest
Аноним 29/04/16 Птн 11:58:32 #468 №730427 
>>730326
Ну так посоветуй тогда сам, раз видишь, что тут народ темный.
Аноним 29/04/16 Птн 12:34:21 #469 №730444 
>>730326

давай ты вбросишь своё сиви, а мы посмеёмся
Аноним 29/04/16 Птн 14:04:31 #470 №730505 
14619278713330.jpg
>>653952
Я 2 дня с утра до вечера ебался со сборкой tensorflow с поддержкой старых GPU. Он очень сложно собирается.

>>725778
Google Trends.

У меня такой вопрос. А нужен ли матан?
Собственно, и Эндрю Ын говорил, что по большому счёту они не ученые, градиент десент писали не они, и бэкпроп он сам тоже не напишет.
Там была картинка "1 Придумать гипотезу -> реализовать -> проверить -> goto 1".
Выходит: алгоритмы есть. Дата саентисты должны выбрать алгоритм, оттюнинговать его, написать всю эту работу с бигдатой, и постепенно методом научного тыка выводятся новые способы, фишки, и так далее.
Аноним 29/04/16 Птн 14:12:37 #471 №730508 
Вопрос по перцептронам.
Поясните пожалуйста, какого хуя при обучении корректируется еще и W0*X0 (т.е. порог)?
И еще: как узнать, что 2 класса элементов линейно разделимы?
Аноним 29/04/16 Птн 14:27:45 #472 №730512 
>>730505
Хз. Я как дата слесарь низшего разряда скажу, что ты описал меня.
Аноним 29/04/16 Птн 14:40:15 #473 №730514 
>>730512
Да ладно тебе. Бобук говорил, что он "маляр" (а не "художник"), и когда он рассказывал про свою SVM он говорил, что взял библиотеки, подружил, запилил за 30 часов. Никакой глубинный матан он не изучал.
Аноним 29/04/16 Птн 16:02:55 #474 №730538 
>>730418
Ах, да, в стандартный цирк еще входит рандом форест, ну как же я мог забыть.
>>730427
Задача типичная для векторного квантования, тем более, есть априорно заданные классы. Проще LVQ в данном случае сложно что-то придумать.
Аноним 29/04/16 Птн 16:11:23 #475 №730546 
>>730514
Ну хуй знает, это не так интересно. Вот влезать в матан в разы интереснее, чем тыкать по библиотечкам. Правда я теперь трачу почти всё время на затыкание дыр в образовании.

А пыхопетухи и джава-ерохи в это время затыкают дыры бухгалтерш...
Аноним 29/04/16 Птн 17:56:19 #476 №730629 
>>730538

А как бы ты решал задачу про MNIST (дана в опроснике выше)?
Аноним 29/04/16 Птн 23:40:53 #477 №730884 
>>718801
Очевидно нужно начать с иерархии Хомского
Аноним 30/04/16 Суб 15:01:04 #478 №731206 
>>730629
>как бы ты решал задачу про MNIST (дана в опроснике выше)?
1) Загуглил бы.
2) Из выдачи выбрал бы пример попроще на основе того, с чем раньше уже сталкивался.
Ибо зачем изобретать велосипед, когда пример классификатора мнист есть для каждой первой-второй библиотеки в качестве хелловорлда. Зачем про этот мнист на собеседовании спрашивать, непонятно. Задача абсолютно не творческая, "продай мне вот эту ручку" и то сложнее.
Аноним 30/04/16 Суб 15:31:56 #479 №731237 
Этого не исключают маняэксперды, которые кокарекали что нефть будет по 16. Хуйня короче, оп свиносотенец.
Аноним 30/04/16 Суб 15:34:57 #480 №731241 
>>731237
Блять, не туда написал.
Аноним 30/04/16 Суб 22:00:37 #481 №731550 
>>731206

Ты похоже никогда не проводил собеседований. Разговор с потенциальными коллегами надо начинать с простого - для объёмных задач есть домашнее задание.

> 1) Загуглил бы.

Уже что-то. А если бы у тебя не было ключевого слова в виде названия набора данных?

> классификатора мнист

А вот тут стало грустно.
Аноним 30/04/16 Суб 22:03:04 #482 №731551 
>>730514

В машинном обучении матана никакого особо нет, это же не топология. Просто область хайпнутая, каждая макака отчитавшая минимум пейперов-книжек и потыкавшая пару либ начинает забываться и считать себя академиком, а не инженером.
Аноним 30/04/16 Суб 22:51:07 #483 №731594 
>>731551
Может быть. Но вот всякие вещи, типа вариационного вывода кажутся довольно сложными, для понимания которых неплохо было бы хорошо знать вариационное исчисление и теор.вер.
Аноним 30/04/16 Суб 22:54:22 #484 №731599 
>>731551
А что скажете за topological data analysis? Хуйня или актуальная область?
Аноним 01/05/16 Вск 02:18:18 #485 №731706 
Аноны, я вот посмотрел пару лекций воронцова, и видос от малого шада про нейронки. Назрел вопрос, нахуя тогда вообще заёбы с алгоритмами и всей этой поеботой, если можно скормить нейронке побольше данных, и она сама всё посчитает?
Аноним 01/05/16 Вск 02:29:56 #486 №731709 
>>731599
Есть ещё категорный подход ко всей этой хуйне.
Аноним 01/05/16 Вск 02:47:11 #487 №731713 
>>731706
Потому что это не так, если у тебя нейронка в принципе не способна описать твою задачу, то сколько данных не будет, лучше не станет - это так же, как сколько линейному классификатору данных не давай, параболу он не опишет.
Аноним 01/05/16 Вск 17:37:59 #488 №731978 
есть тут не кукаретики, знающие чем очный ШАД отличается от заочного?
Судя по сайту это
"В ШАД можно учиться заочно, смотря видеолекции и переписываясь с преподавателями московского отделения Школы по почте."
Ну, т.е. с лекциями более-менее понятно, но что с семинарами? Они вообще в ШАД есть?
Аноним 01/05/16 Вск 18:03:34 #489 №731995 
>>731713
Но нейронка может описать что угодно.
Аноним 01/05/16 Вск 19:18:08 #490 №732027 
>>731713
опишет если подать на вход квадратичную функцию
шах и мат
Аноним 01/05/16 Вск 19:20:13 #491 №732028 
>>731706
Не во всех задачах у тебя будет достаточно данных, чтобы нейронка смогла нормально обучиться (data augmentation не везде прокатит). Почитай для разнообразия какие решения выигрывают на kaggle.
>>731978
Заочка это полный пздц: иногда запись лекции выходит с почти недельным запозданием, а домашку нужно сдавать наравне со всеми. Ещё проблемы с мотивацией к концу семестра, когда уже наскрёб на трояк. Если ты имеешь ввиду семинары не в рамках какого-то предмета (типа тренировок по машинному обучению), то видеозаписей там нет.
Аноним 01/05/16 Вск 21:47:02 #492 №732096 
14621284224020.png
>>732028
кто может вкратце описать как проходит учеба в шад?
5 дней в неделю с 18 до 21 лекции?
+ домашние задания?
+ экзамены в конце семестра ?
как-то так?
Аноним 01/05/16 Вск 23:24:30 #493 №732171 
>>652472 (OP)
Хочу вкатиться в мл, но не выкатываясь из дотнета. Есть ли смысл что-то пилить на f#, или лучше сразу забить и дрочить пистон? Вроде как на фа диезе тож много разных крутых штук с мл, и литература как Ml project for dotNet
https://drive.google.com/file/d/0BxZ_ztf-wiDQd2tQNkI1WTVDb00/view?usp=sharing
Аноним 01/05/16 Вск 23:31:20 #494 №732174 
>>731995
А в числе пи содержится все, что угодно. И что? На практике это не применимо.
Аноним 01/05/16 Вск 23:57:23 #495 №732193 
>>732171
Дрочи литературу из оп-поста. Пиши на чём удобно т.е. R/Python.
Аноним 02/05/16 Пнд 00:13:04 #496 №732201 
>>732096
Если есть желание, можешь ходить на всё подряд. А так у каждого отделения есть свою программа, которой ты должен придерживаться – обычно два курса обязательных и один на выбор. На некоторых курсах помимо домашних заданий проводят контрольные работы, а также всякие конкурсные задания. На каждом предмете свои требования, но в целом можно сделать 70% всей работы и получить заслуженный зачёт (это тройка). В конце семестра есть шанс доработать до зачёта по пройденным курсам, в противном случае, если не выполняешь программу своего отделения, идёшь на вылет. В среднем каждый семестр уходят по 15% всех учащихся; выпускается только половина из поступивших.
Аноним 02/05/16 Пнд 00:17:37 #497 №732202 
>>732201
а когда идут занятия?
реально каждый/почти каждый день с понедельника по пятницу с 18 до 21 часа? это так?
Аноним 02/05/16 Пнд 00:27:37 #498 №732207 
>>732202
Да, ещё иногда бывают в субботу днём. Повторюсь, тебе необходимо посещать только три курса, и никто не накажет за низкую посещаемость (только не стоит пропускать контрольные).
P.S. любые подобные вопросы можно задавать кураторам на почту, а не ждать, пока рандомный диван ответит.
Аноним 02/05/16 Пнд 00:37:46 #499 №732213 
>>732207
ну т.е. работающему человеку на очке невозможно учиться
Аноним 02/05/16 Пнд 02:23:04 #500 №732232 
>>732213
Я лично знаю людей работающих фултайм и обучающихся в магистратуре ВШЭ и в ШАДе (у них взаимозачет части курсов). Как говорится, было бы желание.
Аноним 02/05/16 Пнд 02:29:12 #501 №732233 
>>732232
но как ты можешь на приехать на лекцию к 1800, если у тебя рабочий день заканчивается в 1800?
Аноним 02/05/16 Пнд 02:42:38 #502 №732237 
>>732233
Не слышал про гибкий график?
Аноним 02/05/16 Пнд 12:12:40 #503 №732362 
>>732237
> работающих фултайм
> гибкий график
Аноним 02/05/16 Пнд 12:42:11 #504 №732386 
>>732362
Проблемы?
Аноним 02/05/16 Пнд 12:43:28 #505 №732388 
>>732174
Ты в манямирке живешь? На практике уже все на нейронках работает, даже гугл, даже фейсбук.
Аноним 02/05/16 Пнд 12:59:17 #506 №732400 
Ну, господа воннаби-академики, кто перекат пилить будет?
Аноним 02/05/16 Пнд 13:46:59 #507 №732450 
>>732400
пусть нейронная сеточка и пилит
Аноним 02/05/16 Пнд 14:22:00 #508 №732479 
>>731995
Нет. Даже для элементарных задач классификации нужны люди, которые определят правильный набор фич.
Наглядно:
http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.90573&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification
Аноним 02/05/16 Пнд 15:53:27 #509 №732537 
Как выделять паттерны из текста? В какую сторону тут можно копать?
Аноним 02/05/16 Пнд 16:09:50 #510 №732553 
Единственное о чём мечтаю: вкатится в data analysis.
Но не представляю как. С чего начать?
Закончил универ программистом, но опыта работы нет.
Аноним 02/05/16 Пнд 16:43:59 #511 №732586 
>>732537
Если нужно генерировать текст на основе другого, то Марковкие цепи.
Аноним 02/05/16 Пнд 16:44:27 #512 №732587 
>>732553
Проходи онлайн курсы (их дохуя), пробуй участвовать в соревнованиях от Keggle.
Аноним 02/05/16 Пнд 16:52:38 #513 №732600 
14621971590280.png
>>732479
Проблемы?
Аноним 02/05/16 Пнд 17:04:48 #514 №732618 
>>732362

И что?
Аноним 02/05/16 Пнд 18:07:41 #515 №732678 
Посоны, что посоветуете по трекингу объектов на видео (не совсем МЛ, но рядом)? Нужно диплом слепить.
Аноним 02/05/16 Пнд 18:19:00 #516 №732684 
>>732678
Тебе понадобится детектор этих твоих объектов на картинке. Дальше накладываешь фильтр Калмана на координаты по кадрам.
Аноним 02/05/16 Пнд 20:06:00 #517 №732737 
>>732587
Курсы уже прохожу.
Работу как находить?
Аноним 02/05/16 Пнд 20:10:39 #518 №732738 
>>652940
> pr
> даже не может сменить раскладку
Кеккерель.
Аноним 02/05/16 Пнд 20:45:21 #519 №732752 
>>732738
У него сеточка ещё не самообучилась!
Аноним 02/05/16 Пнд 21:22:25 #520 №732775 
>>732678
MIL + State space
Аноним 03/05/16 Втр 09:40:41 #521 №733014 
>>732678
Дока к OpenCV 3+
Аноним 03/05/16 Втр 10:19:31 #522 №733043 
14622599714420.jpg
14622599714421.png
>ШАД
Я как услышал на первой же лекции на Курсере что-то вроде
"Здесь x проецируется на двумерную гиперплоскость" - я поседел. Да и вообще нить терял каждые 2 минуты на лекции. Хотя 2 курса матана у меня есть. Стуктуры данных и алгоритмы в универе понимал хорошо

Вы серьёзно осиливаете это? Мне в грузчики идти?
Аноним 03/05/16 Втр 10:27:49 #523 №733052 
>>733043
> Мне в грузчики идти?
Можно сайтики делать и много других полезных вещей.
Аноним 03/05/16 Втр 11:16:23 #524 №733079 
>>733043
А ты не спеши, Бро. Тупишь - значит темп сбавь. Главное делай и поймёшь все. Это ж не соревнование.
Мимо скриптомакак
Аноним 03/05/16 Втр 13:24:32 #525 №733160 
>>733043
>Вы серьёзно осиливаете это?
Да.
>Хотя 2 курса матана у меня есть.
Гиперплоскости это про линал, у тебя он есть?
Аноним 03/05/16 Втр 14:53:07 #526 №733207 
>>732678
В нормальном дипломе у тебя должен быть обзор технологий трекинга с обоснованием, почему взял именно эту, так что парой рабочих методов не отделаешься. Так что лучше такие вещи лучше не на АИБ узнавать, а у своего научника - на то он и нужен, чтобы сказать, в какую сторону и что для твоего диплома изучать, чтобы ты его потом успешно защитил.
Если тебе нужно просто реализовать трекинг по готовым и отлаженным алгоритмам - то тогда комбайн OpenCV для этого отлично подойдет.
Есть хорошая книжка "Learning OpenCV", в которой сначала подробно дается теория, а потом то, как это с помощью библиотеки реализовывается.
Аноним 03/05/16 Втр 15:57:02 #527 №733243 
Начинаю пилить перекат
ОП
Аноним 03/05/16 Втр 16:28:36 #528 №733254 
>>733207
Спасибо
> Learning OpenCV
Эта http://shop.oreilly.com/product/0636920044765.do ?
Аноним 03/05/16 Втр 17:17:22 #529 №733277 
https://2ch.hk/pr/res/733276.html
https://2ch.hk/pr/res/733276.html
https://2ch.hk/pr/res/733276.html
ПЕРЕКАТ
ПЕРЕКАТ
ПЕРЕКАТ
Аноним 03/05/16 Втр 17:42:17 #530 №733291 
>>733254
У меня вот эта была, но она от 2008 года: http://shop.oreilly.com/product/9780596516130.do

Для нее сделали какой-то перевод, он любительский, я не читал, про каченство ничего сказать не могу: https://vk.com/opencv

Та, что ты скинул - новая, но, кажется, еще не закончена, хотя глава про трекинг там есть.


Аноним 03/05/16 Втр 19:53:26 #531 №733405 
Охуенный тред. Спасибо, ребята.
Мимопроходил
Аноним 04/05/16 Срд 11:10:59 #532 №733868 
>>732600
С этой задачей и не должно быть проблем.
Ты попробуй последнюю (2ую во втором ряду).
Аноним 13/05/16 Птн 03:05:02 #533 №741961 
>>652472 (OP)
>Machine Learning 101
>1. Introduction to Statistical Learning, Casella ( http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf )
>Книга для нубов, очень хорошая. Все разжевано и положено в рот.
Есть такое же, но про биг дату?
Аноним 16/05/16 Пнд 16:47:13 #534 №745090 
>>654540
>порочен. От детальной декомпозиции предметной области
За всем стоит столь страшная и неприятная правда, что ложь и замалчивание среди руководителей, исполнителей и аналитиков привели к вымыванию осознанной деятельности, т. е. запрет познания сути, элементарного анализа и мышления постепенно привел к отказу от познания как такового в бизнесе, даже среди тех, кому было поручено думать. Остались зомби с высоким IQ, дебилы мастерски владеющие навыками решения задач, умеющие обращаться с алгоритмами и программистскими инструментами, но с мышлением успешного овоща.
Способные к познанию и мышлению люди из этих дел выплыли сами, т. к. плавать в этом говне из чудовищной правды, служить лжи и при этом не объявлять этому войну — для думающего невозможно.
Для нормального общества любая деятельность подразумевает системный подход и формализацию не только в анализе но и в действиях, созидании, планировании. Но т. к. общество глубоко ненормально, у него цели совсем иные, и всё это будет дорого, а во-вторых, как я писал выше — вредно и даже опасно.
Многие думают, если там, что-то делают, так они там точно уме, но вот, к примеру, глобальный американский отдел маркетинга и рекламы ментально представляет собой в точности то же что под маркетингом и рекламой понимает русский.
comments powered by Disqus

Отзывы и предложения