Домен arhivach.hk временно не функционирует! Используйте адрес
ARHIVACH.SITE.
24 декабря 2023 г. Архивач восстановлен после серьёзной аварии. К сожалению, значительная часть сохранённых изображений и видео была потеряна.
Подробности случившегося. Мы призываем всех неравнодушных
помочь нам с восстановлением утраченного контента!
Pattern Recognition and Machine Learning, Bishop.
Information theory, inference & learning algorithms, MacKay http://www.inference.phy.cam.ac.uk/itila/
Machine Learning: A Probabilistic Perspective, Murphy
Introduction to Statistical Learning ( http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf )
Elements of Statistical Learning ( http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf )
Foundations of Machine Learning, أشهد أن لا إله إلا الله وأشهد أن محمد رسول الله. http://www.cs.nyu.edu/~mohri/mlbook/
Fundamentals of Neural Networks: Architectures, Algorithms, and Applications, Fausett L.
А. Пегат, "Нечёткое моделирование и управление"
другое
http://libgen.io / http://bookzz.org/ - здесь можно одолжить ^ книги и не только
http://arxiv.org/find/all/1/all:+nejronochki/0/1/0/all/0/1
https://www.reddit.com/r/MachineLearning/wiki/index
https://vk.com/deeplearning и http://deeplearning.net/reading-list/
https://www.kadenze.com/courses/creative-applications-of-deep-learning-with-tensorflow/info тюториал по slesarflow
http://rgho.st/8g68fTCSx две брошюры по deep learning для слесарей.
http://kaggle.com - весёлые контесты. денежные призы
https://www.hackerrank.com/domains/ai/machine-learning/difficulty/all/page/1 - олимпиадки
курс от китаёзы
http://videolectures.net/mlss09uk_cambridge/
яп
1. http://julialang.org/
2. https://www.microsoft.com/en-us/research/project/infernet/
3. https://www.r-project.org/
4. питухон и так все знают
5. idris/coq - модные яп для формально верифицированных нейроночек с тренировкой на этапе компиляции
ПЛАТИНА
Книги хорошо, но с чего начать практический вкат?
Во-первых, вам нужна любая unix-based система. На Windows возможно запустить нижеперечисленное, но ждите пердолева с настройкой и неодобрительных взглядов анонимуса. Кроме того, в компаниях, так или иначе связанных с разработкой йоба-ПО и machine learningом, Linux/OS X является стандартом. Привыкайте.
Во-вторых, определитесь с языком. Python и C++ наиболее мейнстримовые инструменты, с ними вы без еды не останетесь. Есть еще R, на котором пацаны живут статистикой и анальными пакетами. Некоторые инструменты являются языко-независимыми (Vowpal Vabbit, XGBoost), но обвязывать их вы все равно будете из какой-либо среды.
На Java разработано много production-ready инструментов для бигдаты и если вы угораете по терабайтам данных, то имеет смысл посмотреть в её сторону. Впрочем, лучше это делать уже потом, когда прийдет осознание потребностей.
В-третих, выбирайте себе задачу. Что угодно: распознать качпу, обнаружить ботов по логам, найти раковых больных. Список можно посмотреть, например, на kaggle.com. После чего приступаете к решению выбранной задачи.
Не прийдется ли мне потом с таким наборищем знаний идти в макдак работать?
Несмотря на хайп вокруг ML, далеко не во всех IT компания есть необходимость в ML и понимание круга задач, которые можно решить этими методами. Но поверьте, в 2017 компетентный специалист будет востребован. В России потребителями ваших знаний могут стать: Яндекс, Mail.ru, Вконтакте, Rambler, Касперский, Билайн, Связной, ABBYY, Хуавэй. В биоинформатике есть определенный спрос, можно поскролить http://blastim.ru
Здорово, но я так и не понял чем же вы занимаетесь в IT компаниях?
Попытаюсь ответить со своей колокольни и сразу хочу предупредить, что это едва ли консенсуальное мнение.
ML-специалист - это такое зонтичное определение для человека, способного увидеть проблему, выгрепать кучу логов и данных, посмотреть на них, придумать решение проблемы и врезать это решение его в продакшн. По сути, это кодер, решающий не чисто технические, а, в некотором роде, человеческие проблемы.
Имхо, мы все же остаемся в первую очередь разработчиками.
Что такое TensorFlow?
TensorFlow - опенсорсный гугловый инструмент для перемножения тензоров и оптимизации функционалов. Опенсорсный - потому что даже важные куски типа параллелизации уже выкачены в паблик. Если вам все ещё непонятно что это, значит это вам и не нужно, сириусли. Google перестарался с рекламой и теперь люди думают, что TF - это серебряная пуля и затычка для каждой бочки. До TF был Theano, который выполнял свою работу не хуже. И, в отличии от TF, он уже находится в стабильной фазе.
будет ли ML нужен в ближайшие 10 лет, или это просто хайп?
будет. хайп.
смогу найти работу?
Яндекс, мейлру, касперский, несколько биоинформатических компаний (iBinom, можно еще blastim.ru поскролить на тему работы), билайн (они с НГ целое подразделение открыли под ML и биг дату), связной. Ну и западные аутсорсы, если готов рачить за валюту.
нужна математика?
для начинающего ничего особого знать не нужно
https://www.amazon.co.uk/Calculus-Michael-Spivak-x/dp/0521867444
https://www.amazon.co.uk/dp/0534422004/ref=pd_lpo_sbs_dp_ss_2?pf_rd_p=569136327&pf_rd_s=lpo-top-stripe&pf_rd_t=201&pf_rd_i=0980232716&pf_rd_m=A3P5ROKL5A1OLE&pf_rd_r=3TZ38AZ2BY28R19H4SA5
https://www.amazon.co.uk/Calculus-Several-Variables-Undergraduate-Mathematics/dp/0387964053
https://www.amazon.co.uk/Introduction-Probability-Dimitri-P-Bertsekas/dp/188652923X
"основы теории вероятностей" Вентцель
поясните за нейроночки
нейроночка - массив
шад)))
Нет там ничего ML-специфичного, знание матана и теорвера на уровне заборостроительного вуза. Теорвер проходится на третьем курсе, как раз 20 лет.
Рандомный хрен туда не сможет поступить, потому что планка намеренно задрана, а не потому что там такая охуенно сложная программа. Это традиционная наебка "элитных учебных заведений", в которой учат так же хуево, как и везде, но за счет отбора поступающих якобы формируются неебовые успехи, которые объясняются именно качеством преподавания.
Иными словами, у тех, кто способен поступить, и так в жизни проблем с трудоустройством не будет.
Тред #1: https://arhivach.org/thread/147800/
Тред #2: https://arhivach.org/thread/170611/
Тред #3: https://arhivach.org/thread/179539/
Тред #4: https://arhivach.org/thread/185385/
Тред #5: https://arhivach.org/thread/186283/
Тред #6: https://arhivach.org/thread/187794/
Тред #7: https://arhivach.org/thread/196781/
Тред #8: https://arhivach.org/thread/209934/
Тред #9: https://arhivach.org/thread/223216/
Тред #10: https://arhivach.org/thread/234497/
Тред #11: https://arhivach.org/thread/240332/
Тред #12: https://arhivach.org/thread/246273/