Домен arhivach.hk временно не функционирует! Используйте адрес
ARHIVACH.SITE.
24 декабря 2023 г. Архивач восстановлен после серьёзной аварии. К сожалению, значительная часть сохранённых изображений и видео была потеряна.
Подробности случившегося. Мы призываем всех неравнодушных
помочь нам с восстановлением утраченного контента!
Я ничего не понимаю, что делать?
Вкатывальщики импортят slesarplow as sp по туториалам (хотя сейчас актуальнее keras и pytorch)
Толковые качают из репозитория awesome-XXXX на гитхабе проект какого-то китайца, меняют фамилию и получают $10M инвестиций как стартап.
Умные смотрят prerequisites на https://see.stanford.edu/Course/CS229 и http://cs231n.stanford.edu/
Какая математика используется?
В основном линейная алгебра, теорвер, матстат, базовый матан и matrix calculus.
Почему python?
Исторически сложилось
Что почитать для вкатывания?
http://www.deeplearningbook.org/
Николенко "Глубокое обучение" - на русском, есть примеры, но меньше охват материала
В чем практиковаться нубу?
http://www.deeplearning.net/tutorial/
https://www.hackerrank.com/domains/ai
https://github.com/pytorch/examples
https://github.com/ChristosChristofidis/awesome-deep-learning#tutorials
Где набрать первый самостоятельный опыт?
https://www.kaggle.com/ | http://mltrainings.ru/
Стоит отметить, что спортивный deep learning отличается от работы примерно так же, как олимпиадное программирование от настоящего. За полпроцента точности в бизнесе борятся редко, а в случае проблем нанимают больше макак для разметки датасетов. На кагле ты будешь вилкой чистить свой датасет, чтобы на 0,1% обогнать конкурента.
Где работать?
https://www.indeed.com/q-deep-learning-jobs.html
Вкатывальщики могут устроиться программистами и дальше попроситься в ML-отдел
Где узнать последние новости?
https://www.reddit.com/r/MachineLearning/
http://www.datatau.com/
https://twitter.com/ylecun
На реддите также есть хороший FAQ для вкатывающихся
Где посмотреть последние статьи?
http://www.arxiv-sanity.com/
https://paperswithcode.com/
Количество статей зашкваливающее, поэтому все читают только свою узкую тему и хайповые статьи, упоминаемые в блогах, твиттере, ютубе и телеграме, топы NIPS и прочий хайп. Есть блоги, где кратко пересказывают статьи, даже на русском
Где ещё можно поговорить про анализ данных?
http://ods.ai/
Нужно ли покупать видеокарту/дорогой пека?
Если хочешь просто пощупать нейроночки или сделать курсовую, то можно обойтись облаком. На март 2020 Google Colab дает бесплатно аналог GPU среднего ценового уровня (что-то между 1050 и 1080) на несколько часов с возможностью продления.
Иначе выгоднее вложиться в GPU https://timdettmers.com/2019/04/03/which-gpu-for-deep-learning/ Заодно в майнкрафт на топовых настройках погоняешь
Когда уже изобретут AI и он нас всех поработит?
На текущем железе - никогда, тред не об этом
Список дедовских книг для серьёзных людей:
Trevor Hastie et al. "The Elements of Statistical Learning"
Vladimir N. Vapnik "The Nature of Statistical Learning Theory"
Christopher M. Bishop "Pattern Recognition and Machine Learning"
Взять можно тут: http://libgen.io/
Напоминание ньюфагам: немодифицированные персептроны и прочий мусор середины прошлого века действительно не работают на серьёзных задачах.
Предыдущий:
https://2ch.hk/pr/res/1614936.html
Архивач:
http://arhivach.ng/thread/412868/
Остальные в предыдущих тредах
Там же можно найти треды 2016-2018 гг. по поиску "machine learning" и "НЕЙРОНОЧКИ & МАШОБЧИК"